全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有无症状感染者的SEIAC模型动力学研究
Dynamics Study of a SEIAC Model with Asymptomatic Patient

DOI: 10.12677/AAM.2023.127315, PP. 3144-3152

Keywords: SEIAC模型,基本再生数,全局渐近稳定性
SEIAC Model
, Basic Reproduction Number, Global Asymptotic Stability

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文基于无症状感染者在疾病传播过程中的作用,建立了一类具有无症状感染者的SEIAC动力学模型,利用下一代矩阵得到决定疾病存在与否的基本再生数R0,通过构造Lyapunov函数得到当R0 < 1时,无病平衡点是全局渐近稳定的,即疾病最终趋于灭绝;而当R0 > 1时,地方病平衡点是全局渐近稳定的,即疾病将持续存在成为地方病。最后借助Mathematica软件对基本再生数进行敏感性分析及模型数值模拟。结果表明:提高治疗水平有利于疾病的防控,忽视无症状感染者的影响将低估疾病的传播情况。该结果将为具有无症状感染者的传染病的防控提供一定的理论支撑。
Based on the role of asymptomatic patient in the process of disease transmission, this paper estab-lishes a SEIAC dynamic model with asymptomatic patient. The next generation matrix is used to obtain the basic reproduction number R0 that determines the existence of the disease. By con-structing the Lyapunov function, it is obtained that when R0 < 1, the disease-free equilibrium is globally asymptotically stable, that is, the disease eventually tends to extinction, when R0 > 1, the endemic equilibrium is globally asymptotically stable, in other words, the disease will persist and become endemic. Finally, the sensitivity analysis and model numerical simulation of the basic re-production number are carried out by Mathematica. The results show that improving the treatment level is conducive to the prevention and control of the disease, and ignoring the impact of asymp-tomatic patient will underestimate the spread of the disease. The results will provide some theo-retical support for the prevention and control of infectious diseases with asymptomatic patient.

References

[1]  Kermack, W.O. and McKendrick, A.G. (1927) A Contribution to the Mathematical Theory of Epidemics. Proceedings of the Royal Society of London. Series A: Containing Papers of a Mathematical and Physical Character, 115, 700-721.
https://doi.org/10.1098/rspa.1927.0118
[2]  杨赟, 赵亚男. 基于随机SEIR模型的新冠肺炎传播动力学分析[J]. 东北师大学报(自然科学版), 2022, 54(4): 37-43.
[3]  张志琪. 具有无症状感染者的COVID-19传播动力学模型[D]: [硕士学位论文]. 信阳: 信阳师范学院, 2022.
[4]  何丹, 陈庆良, 田志鹏, 罗小华, 王大虎. 广州市某区2011-2020年艾滋病疫情趋势分析及防控策略研究[J]. 医学动物防制, 2022, 38(1): 74-78.
[5]  Wilder-Smith, A., Teleman, M.D., Heng, B.H., et al. (2005) Asymptomatic SARS Coronavirus Infection among Healthcare Workers, Sin-gapore. Emerging Infectious Diseases, 11, 1142-1145.
https://doi.org/10.3201/eid1107.041165
[6]  Bruderer, U., Swam, H., Haas, B., et al. (2004) Differentiating Infection from Vaccination in Foot-and-Mouth-Disease: Evaluation of an ELISA Based on Recombinant 3ABC. Veterinary Microbiology, 101, 187-197.
https://doi.org/10.1016/j.vetmic.2004.01.021
[7]  Heffernan, R.T., Pambo, B., Hatchett, R.J., Leman, P.A., Swa-nepoel, R. and Ryder, R.W. (2005) Low Seroprevalence of IgG Antibodies to Ebola Virus in an Epidemic Zone: Ogo-oué-Ivindo Region, Northeastern Gabon, 1997. The Journal of Infectious Diseases, 191, 964-968.
https://doi.org/10.1086/427994
[8]  王国柱, 池晓航, 周强. 基于改进SEIR模型的疫情预测与分析[J]. 河南工学院学报, 2020, 28(5): 29-33.
[9]  Gao, D., Munganga, J.M.W., van den Driessche, P. and Zhang, L. (2022) Effects of Asymptomatic Infections on the Spatial Spread of Infectious Diseases. SIAM Journal on Applied Mathematics, 83, 899-923.
https://doi.org/10.1137/21M1398434
[10]  Dreessche, P. and Watmough, J. (2002) Reproduction Numbers and Sub-Threshold Endemic Equilibria for Compartmental Models of Disease Transmission. Mathematical Biosciences, 180, 29-48.
https://doi.org/10.1016/S0025-5564(02)00108-6
[11]  Mischaikow, K., Smith, H.L. and Thieme, H.R. (1995) As-ymptotically Autonomous Semiflows: Chain Recurrence and Lyapunov Functions. Transactions of the American Math-ematical Society, 347, 1669-1685.
https://doi.org/10.1090/S0002-9947-1995-1290727-7
[12]  Tang, B., Wang, X., Li, Q., et al. (2020) Estimation of the Transmission risk of the 2019-nCoV and Its Implication for Public Health Interventions. Journal of Clinical Medicine, 9, Article 462.
https://doi.org/10.3390/jcm9020462

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133