全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不同集成方法对云南日最低气温的集成预报试验
Experiment on the Daily Minimum Temperature Forecast in Yunnan by Different Ensemble Methods

DOI: 10.12677/CCRL.2023.124071, PP. 684-694

Keywords: 日最低气温,集成预报,权重函数,预报性能
Daily Minimum Temperature
, Ensemble Forecast, Weight Function, Forecast Performance

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过前期对ECMWF-thin地面2 m气温在云南不同地区日最低气温各时效预报产品的检验,结果显示数值模式对云南不同地区日最低气温的预报性能,随预报时效延长并非一致性下降,而是呈现波动性降低。本文在此基础上,采用算术平均集成、相关权重集成、误差订正集成、相关权重与误差订正综合集成、预报准确率评分权重集成、准确率评分与误差订正综合集成等方法分别构建6种集成预报模型,并开展对云南省不同地区站点的日最低气温的集成预报试验。结果表明,6种集成方法对云南省不同地区站点日最低气温的集成预报效果均较未经集成的原始预报有明显提升,但不同集成方法对同一地区日最低气温的改进效果不同,同一种集成方法在不同地区的集成预报效果也有所不同;6种集成模型中简单的算术平均集成预报效果相对较差,而既考虑前期相关性和技巧评分,同时又考虑前期预报误差变化的综合集成效果相对较好;值得注意的是随着预报时效的延长,各种集成方法对原始预报效果的改进更加显著,具有很好的参考意义。
Through the previous verification of the time-dependent prediction products of ECMWF-thin surface 2 m temperature at the daily minimum temperature in different regions of Yunnan province, the results show that the prediction performance of the numerical model for the daily minimum temperature in different regions of Yunnan does not decrease consistently with the prolongation of the prediction time-dependent, but shows a decrease in volatility. On this basis, the arithmetic mean integration, correlation weight integration, error correction integration, correlation weight and er-ror correction integration, forecast accuracy score weight integration, accuracy score and error correction integration are adopted to construct six ensemble forecast models respectively, and the ensemble forecast experiments of daily minimum air temperature at stations in different regions of Yunnan Province are carried out. The results show that the effect of the six ensemble methods on the ensemble forecast of daily minimum temperature at stations in different regions of Yunnan Province is significantly improved as compared with that of the original forecast without integration. However, the improvement effects of different ensemble methods on the daily minimum temperature in the same region are different, and the ensemble forecast effects of the same ensemble method in different regions are also different. The simple arithmetic mean ensemble prediction among the six ensemble models is relatively poor in effect, and the ensemble considering the early correlation and skill score as well as the variation of the early prediction error is relatively good in effect. It should be noted that with the prolongation of prediction time-effect, the improvement of original prediction effect by various ensemble methods is more significant, which has good reference significance.

References

[1]  Lorenz, E.N. (1965) A Study of the Predictability of 28-Variable Atmosphere Model. Tellus, 17, 321-333.
[2]  Epstein, E.S. (1969) Stochastic Dynamic Prediction. Tellus, 21, 739-759.
[3]  Leith, C. (1974) Theoretical Skill of Monte Carlo Forecasts. Monthly Weather Review, 102, 409-418.
https://doi.org/10.1175/1520-0493(1974)102<0409:TSOMCF>2.0.CO;2
[4]  Hoffman, R.N. and Kalnay, E. (1983) Lagged Average Forecasting, an Alternative to Monte Carlo Forecasting. Tellus, 35A, 100-118.
[5]  Brown, B.G. and Murphy, A.H. (1996) Improving Forecasting Performance by Combining Forecasts: The Example of Road-Surface Temperature Forecasts. Meteorological Applications, 3, 257-266.
https://doi.org/10.1002/met.5060030307
[6]  Du, J., Mullen, S.L. and Sanders, F. (1997) Short-Range Ensemble Forecasting of Quantitative Prediction. Monthly Weather Review, 125, 2457-2459.
https://doi.org/10.1175/1520-0493(1997)125<2427:SREFOQ>2.0.CO;2
[7]  Krishnamurti, T.N., Kishtawal, C.M., LaRow, E., et al. (1999) Improved Weather and Seasonal Climate Forecasts from Multimodel Superensemble. Science, 285, 1548-1550.
https://doi.org/10.1126/science.285.5433.1548
[8]  Krishnamurti, T.N., Kishtawal, C.M., Zhang, Z., et al. (2000) Multimodel Ensemble Forecasts for Weather and Seasonal Climate. Journal of Climatology, 13, 4196-4216.
https://doi.org/10.1175/1520-0442(2000)013<4196:MEFFWA>2.0.CO;2
[9]  Krishnamurti, T.N., Gnanaseslan, C. and Chakraborty, A. (2007) Prediction of the Diurnal Change Using a Multimodel Superensemble. Part1: Prediction. Monthly Weather Review, 135, 3613-3632.
https://doi.org/10.1175/MWR3446.1
[10]  Hamill, T.M., Whitaker, J.S., Fiorino, M. and Benjamin, S.G. (2011) Global Ensemble Predictions of 2009’s Tropical Cyclones Initialized with an En-semble Kalman Fulter. Monthly Weather Review, 139, 668-688.
https://doi.org/10.1175/2010MWR3456.1
[11]  危国飞, 刘会军, 潘宁, 冷典颂, 等. 台风路径数值预报实时订正技术及其集成应用[J]. 大气科学, 2021, 45(1): 195-204.
[12]  高山红. 一种动态权重的台风集成预报方法[J]. 海岸工程, 2018, 37(3): 1-13.
[13]  Peng, P., Kumar, A. and van den Dool, H. (2002) An Analysis of Mutimodel En-semble Predictions for Seasonal Climate Anomalies. Journal of Geophysical Research, 107, ACL18-1-ACL18-12.
https://doi.org/10.1029/2002JD002712
[14]  文彩虹, 杨修群. 使用ECMWF集合预报数据集估计全球季节平均气候异常的潜在可预报性[J]. 气象科学, 2003, 23(4): 379-391.
[15]  吉廷艳, 熊方, 黄继用. 一种短期气候预测集成技术的应用研究[J]. 高原气象, 2002, 21(5): 522-525.
[16]  Van den Dool, H.M. and Rukhovets, L. (1994) On the Weights for an Ensemble-Averaged 6-10-Day Forecast. Weather and Forecasting, 9, 457-465.
https://doi.org/10.1175/1520-0434(1994)009<0457:OTWFAE>2.0.CO;2
[17]  詹国飞, 刘会军, 吴启树, 等. 多模式降水分级最优化权重集成预报技术[J]. 应用气象学报, 2020, 31(6): 668-680.
[18]  段明铿, 王盘兴. 一种新的集合预报权重平均方法[J]. 应用气象学报, 2006, 17(4): 488-493.
[19]  郝翠, 张迎新, 王在文, 等. 最优集合预报订正方法在客观温度预报中的应用[J]. 气象, 2019, 45(8): 1085-1092.
[20]  吴启树, 韩美, 刘铭, 等. 基于评分最优化的模式降水预报订正算法对比[J]. 应用气象学报, 2017, 28(3): 306-317.
[21]  杨松, 杞明辉, 等. 误差订正在预报集成中的应用研究[J]. 气象, 2003, 29(12): 22-25.
[22]  马清, 龚建东, 李莉, 等. 超级集合预报的误差订正与集成研究[J]. 气象, 2008, 34(3): 42-48.
[23]  杞明辉, 徐美玲, 程建刚, 等. 天气预报集成技术和方法应用研究[M]. 北京: 气象出版社, 2006: 77-87.
[24]  李佰平, 智协飞. ECMWF模式地面温度预报的四种误差订正方法的比较研究[J]. 气象, 2012, 38(8): 897-902.
[25]  盛春岩, 范苏丹, 荣艳敏, 等. 几种温度客观预报方法对比及集成预报研究[J]. 气象, 2020, 46(10): 1351-1361.
[26]  杞磊, 章立新, 等. 云南一次寒潮及持续性霜冻天气过程分析[J]. 云南气象, 2021, 40(2): 1-9.
[27]  智协飞, 黄闻. 基于卡尔曼滤波的中国区域气温和降水的多模式集成预报[J]. 大气科学学报, 2019, 42(2): 197-206.
[28]  唐娴, 周荣卫, 何晓凤, 等. 多源降水集成预报技术应用研究[J]. 气象与环境学报, 2021, 37(4): 26-32.
[29]  赵声蓉. 多模式温度集成预报[J]. 应用气象学报, 2006, 17(1): 52-58.
[30]  智协飞, 王田, 季焱. 基于深度学习的中国地面气温的多模式集成预报研究[J]. 大气科学学报, 2020, 43(3): 435-446.
[31]  赵渊明, 漆梁波. 短时强降水概率预报的多模式集成技术研究[J]. 气象, 2021, 47(5): 529-538.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133