全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

规范场论札记(I):电磁学和量子光学中的人造规范势与卡鲁扎–克莱因理论中的衍生电磁规范场
Notes on Gauge Field Theories (I): Synthetic Gauge Potentials in Electromagnetic Optics and Emergent Electromagnetic Gauge Field in the Kaluza-Klein Theory

DOI: 10.12677/MP.2023.134011, PP. 85-112

Keywords: 人造规范场,衍生规范场,卡鲁扎–克莱因理论,引力–规范统一,Synthetic Gauge Field, Emergent Gauge Field, Kaluza-Klein Theory, Gravity-Gauge Unification

Full-Text   Cite this paper   Add to My Lib

Abstract:

规范场是驱动物质运动、参与传递相互作用的中介场。在量子电动力学、弱电统一模型和量子色动力学中,规范场是理论原生的基本动力学场。除此之外,规范场还可以“人造”(synthesis)和“呈展”(emergence)两种方式、以非基本或非原生的动力学场的身份展现,前者在一些应用领域(如电磁学、光学、凝聚态物理学)中为不少研究人员所关注,后者为引力–规范统一目的,在微分几何和广义相对论中以高维引力场的身份衍生出来。本文研究电磁学、量子光学系统中的人造规范势(和人造“磁学”)与卡鲁扎–克莱因理论中的衍生电磁规范场。能呈现人造规范势的物理系统包括含时哈密顿量系统、非共面弯曲光纤系统、原子–光场的电或磁偶极矩相互作用系统、横截面非均匀波导体系和各向异性电磁介质。在这些例子中,原子和光场仿佛是在等效的规范势中运动,其波动方程或场方程中的偏导数算符都被携带了等效规范势的协变导数算符取代。对于“呈展的规范场”这个主题而言,卡鲁扎–克莱因理论(五维时空的广义相对论)能统一爱因斯坦引力理论与麦克斯韦电磁场论,电磁相互作用作为高维引力耦合呈现在普通的四维时空,也即电磁力在本质上是引力。推而广之,非阿贝尔版本的卡鲁扎–克莱因理论能将杨–米尔斯规范场解释为高维引力场。本文从引力作用量密度、高维时空线元、短程线方程这些高维引力理论核心构件推导了电动力学基本内容。本文也分析了早期规范理论简史包括魏尔标度变换理论(1918~1919)、卡鲁扎–克莱因理论(1921, 1926)、克莱因矢量规范理论(1938)的研究历史,评述了引力理论和规范场论之间竞争、反哺、互相促进这一曲折发展史及其给后人可能的启迪性意义。
Gauge field is an intermediate field that drives the motion of matter and participates in mediating the interactions or transfers the forces in various physical systems. In quantum electrodynamics, electroweak unified model and quantum chromodynamics, the gauge fields are the fundamental dynamical fields of the theories. In addition, gauge fields can also be synthetic or/and emergent fields, where the former has attracted the intensive attention of many researchers in some applied areas (such as electromagnetism, optics and condensed matter physics) and the latter emerges as a higher-dimensional gravitational field, serving the purpose of gravity-gauge unification, in differen-tial geometry and general relativity. The two topics such as the artificial gauge potentials (and syn-thetic “magnetism”) in electromagnetic optics and the emergent Yang-Mills gauge field are consid-ered in this paper. Such physical systems in electromagnetics and quantum optics that can exhibit the artificial gauge potentials include time-dependent Hamiltonian systems, noncoplanarly curved fiber, atom-light electric- or magnetic-dipole allowed interaction systems, non-uniform cross-section waveguides and anisotropic electromagnetic media. In these illustrative examples, the atoms and optical fields seem to propagate in the presence of some effective gauge potentials and all the spa-tial partial derivatives in their wave or field equations need to be replaced by the covariant derivatives that carry the effective gauge potentials. As far as the emergent gauge field is concerned, the Kaluza-Klein theory (five-dimensional general relativity) can be used to unify the theories of Ein-stein’s gravitation and Maxwell’s electromagnetism, i.e., the electromagnetic interaction emerges as an effect of higher-dimensional gravity and the electromagnetic force is in essence a gravitational interaction.

References

[1]  Yang, C.N. and Mills, R.L. (1954) Conservation of Isotopic Spin and Isotopic Gauge Invariance. Physical Review, 96, 191-195.
https://doi.org/10.1103/PhysRev.96.191
[2]  Glashow, S.L. (1961) Partial-Symmetries of Weak Interac-tions. Nuclear Physics, 22, 579-588.
https://doi.org/10.1016/0029-5582(61)90469-2
[3]  Weinberg, S. (1967) A Model of Leptons. Physical Review Letters, 19, 1264-1266.
https://doi.org/10.1103/PhysRevLett.19.1264
[4]  Salam, A. (1968) Elementary Particle Physics: Relativistic Groups and Analyticity. In: Svartholm, N., Ed., Eighth Nobel Symposium, Almquvist and Wiksell, Stockholm, 367.
[5]  Weinberg, S. (1995) The Quantum Theory of Fields (I). Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9781139644167
[6]  Weinberg, S. (1996) The Quantum Theory of Fields (II). Cam-bridge University Press, Cambridge.
https://doi.org/10.1017/CBO9781139644174
[7]  Ryder, L.H. (1996) Quantum Field Theory. 2nd Edition, Cam-bridge University Press, Cambridge.
[8]  Weyl, H. (1950) Space-Time-Matter. Dover, New York.
[9]  郝刘祥. 外尔的统一场论及其影响[J]. 自然科学史研究, 2004, 23(1): 50-63.
[10]  杨振宁. 韦耳对物理学的贡献[M]//张奠宙, 编辑. 杨振宁文集[C]. 上册. 上海: 华东师范大学出版社, 1998: 480- 500.
[11]  Klein, O. (1939) On the Theory of Charged Fields. Proceedings of Warsaw Conference on New Theories in Physics, Kasimierz, 30 May-3 June 1938, 77-93.
[12]  Klein, O. (1986) On the Theory of Charged Fields. Surveys in High Energy Physics, 5, 269-285.
https://doi.org/10.1080/01422418608228775
[13]  Klein, O. (1991) On the Theory of Charged Fields. In: Yang, C.N. and Weinberg, S., Eds., The Oskar Klein Memorial Lectures, Vol. 1, World Scientific Publishing, Singapore, 87-103.
[14]  沈建其. 场论小史谈: 奥斯卡?克莱因及其矢量规范理论[J]. 现代物理知识, 2017, 29(5): 57-64.
[15]  沈建其. 克莱因矢量规范理论与电磁力-核力统一模型之历史与物理学意义述评[J]. 现代物理, 2018, 8(4): 204- 231.
[16]  李华钟. 简单物理系统的整体性: 贝里相位及其他[M]. 上海: 上海科学技术出版社, 1998: 3, 6, 10, 12.
[17]  Berry, M.V. (1984) Quantal Phase Factors Accompanying Adiabatic Changes. Proceedings of the Royal Society of London. A: Mathematical and Physical Sciences, 392, 45-57.
https://doi.org/10.1098/rspa.1984.0023
[18]  Aharonov, Y. and Bohm, D. (1959) Significance of Electromagnetic Potentials in the Quantum Theory. Physical Review Journals Archive, 115, 485-491.
https://doi.org/10.1103/PhysRev.115.485
[19]  李新洲. 现代卡卢扎-克莱因理论[J]. 自然杂志, 1985, 8(11): 771-778, 848.
[20]  Jr. Lewis H.R. and Riesenfeld, W.B. (1969) An Exact Quantum Theory of the Time-Dependent Harmonic Oscillator and of a Charged Particle in a Time-Dependent Electromagnetic Field. Journal of Mathematical Physics, 10, 1458- 1473.
https://doi.org/10.1063/1.1664991
[21]  Gao, X.C., Xu, J.B. and Qian, T.Z. (1991) Geo-metric Phase and the Generalized Invariant Formulation. Physical Review A, 44, 7016-7021.
https://doi.org/10.1103/PhysRevA.44.7016
[22]  Fring, A. and Tenney, R. (2021) Exactly Solvable Time-Dependent Non-Hermitian Quantum Systems from Point Transformations. Physics Letters A, 410, Article ID: 127548.
https://doi.org/10.1016/j.physleta.2021.127548
[23]  Zelaya, K. and Rosas-Ortiz, O. (2021) Exact Solu-tions for Time-Dependent Non-Hermitian Oscillators: Classical and Quantum Pictures. Quantum Reports, 3, 458-472.
https://doi.org/10.3390/quantum3030030
[24]  Huang, M., Lee, R.K., Wang, Q.H., Zhang, G.Q. and Wu, J. (2022) Solvable Dilation Model of Time-Dependent PT-Symmetric Systems. Physical Review A, 105, Article ID: 062205.
https://doi.org/10.1103/PhysRevA.105.062205
[25]  Gu, Y., Bai, X.-M., Hao, X.L. and Liang, J.-Q. (2022) PT-Symmetric Non-Hermitian Hamiltonian and Invariant Operator in Periodically Driven SU (1, 1) System. Results in Physics, 38, Article ID: 105561.
https://doi.org/10.1016/j.rinp.2022.105561
[26]  Amaouche, N., Sekhri, M., Zerimeche, R., Maamache, M. and Liang, J.Q. (2022) Non-Hermitian Hamiltonian beyond PT Symmetry for Time-Dependent SU (1, 1) and SU (2) Sys-tems—Exact Solution and Geometric Phase in Pseudo-Invariant Theory. Physics Open, 13, Article ID: 100126.
https://doi.org/10.1016/j.physo.2022.100126
[27]  Fring, A., Taira, T. and Tenney, R. (2023) Real Energies and Berry Phases in All PT-Regimes in Time-Dependent Non-Hermitian Theories. Journal of Physics A: Mathematical and Theoretical, 56, 12LT01.
https://doi.org/10.1088/1751-8121/acbe80
[28]  Chiao, R.Y. and Wu, Y.S. (1986) Manifestations of Berry’s Topo-logical Phase for the Photon. Physical Review Letters, 57, 933-936.
https://doi.org/10.1103/PhysRevLett.57.933
[29]  Tomita, A. and Chiao, R.Y. (1986) Observation of Berry’s Top-ological Phase by Use of an Optical Fiber. Physical Review Letters, 57, 937-940.
https://doi.org/10.1103/PhysRevLett.57.937
[30]  Gao, X.C. (2002) Geometric Phases for photons in an Optical Fi-bre and Some Related Predictions. Chinese Physical Letters, 19, 613-616.
https://doi.org/10.1088/0256-307X/19/5/302
[31]  Gürbüz, N.E. (2021) The Pseudo-Null Geometric Phase along Optical Fiber. International Journal of Geometric Methods in Modern Physics, 18, Article ID: 2150230.
https://doi.org/10.1142/S0219887821502303
[32]  Senthilkumaran, P., Thursby, G. and Culshaw, B. (2000) Fi-ber-Optic Tunable Loop Mirror Using Berry’s Geometric Phase. Optics Letters, 25, 533-535.
https://doi.org/10.1364/OL.25.000533
[33]  Gürbüz, N.E. (2022) The Null Geometric Phase along Optical Fiber for Anholonomic Coordinates. Optik, 258, Article ID: 168841.
https://doi.org/10.1016/j.ijleo.2022.168841
[34]  K?rpinar, T. and Demirkol, R.C. (2022) Berry Phase of the Line-arly Polarized Light Wave along an Optical Fiber and Its Electromagnetic Curves via Quasi Adapted Frame. Waves in Random and Complex Media, 32, 1497-1516.
https://doi.org/10.1080/17455030.2020.1828662
[35]  Wang, P., Yu, Z-Q., Fu, Z., Miao, J., Huang, L., Chai, S., Zhai, H. and Zhang, J. (2012) Spin-Orbit Coupled Degenerate Fermi Gases. Physical Review Letters, 109, Article ID: 095301.
https://doi.org/10.1103/PhysRevLett.109.095301
[36]  Cheuk, L.W., Sommer, A.T., Hadzibabic, Z., Yef-sah, T., Bakr, W.S. and Zwierlein, M.W. (2012) Spin-Injection Spectroscopy of a Spin-Orbit Coupled Fermi Gas. Phys-ical Review Letters, 109, Article ID: 095302.
https://doi.org/10.1103/PhysRevLett.109.095302
[37]  Shen, J.Q. and Chong, S.Y. (2020) Supersymmetric Gauge Potentials in Multiphoton Transition of Atoms and Squeezed-Vacuum-State Driven Supersymmetric “Isospin” Evolution. The European Physical Journal D, 74, Article No. 56.
https://doi.org/10.1140/epjd/e2020-100429-1
[38]  吴鸿庆, 任侠. 结构有限元分析[M]. 北京: 中国铁道出版社, 2000.
[39]  Zienkiewicz, O.C. and Morgon, K. 有限元与近似法[M]. 陶振宗, 张述良, 周之德, 译. 北京: 人民交通出版社, 1989.
[40]  沈建其. 量子演化系统微分几何概念札记(II): 标架场、自旋联络、旋量与挠率[J]. 现代物理, 2021, 11(6): 126- 178.
[41]  Lin, Y.J., Compton, R.L., Perry, A.R., Phillips, W.D., Porto, J.V. and Spielman, I.B. (2009) Bose-Einstein Condensate in a Uniform Light-Induced Vec-tor Potential. Physical Review Letters, 102, Article ID: 130401.
https://doi.org/10.1103/PhysRevLett.102.130401
[42]  Lin, Y.-J., Jiménez-García, K. and Spielman, I.B. (2011) Spin Orbit-Coupled Bose Einstein Condensates. Nature, 471, 83-86.
https://doi.org/10.1038/nature09887
[43]  Lin, Y.J., Compton, R.L., Jiménez-García, K., Porto, J.V. and Spielman, I.B. (2009) Synthetic Magnetic Fields for Ultracold Neutral Atoms. Nature, 462, 628-632.
https://doi.org/10.1038/nature08609
[44]  Lin, Y-J., Compton, R.L., Jimé-nez-García, K., Phillips, W.D., Porto, J.V. and Spielman, I.B. (2011) A Synthetic Electric Force Acting on Neutral At-oms. Nature Physics, 7, 531-534.
https://doi.org/10.1038/nphys1954
[45]  Zhai, H. (2012) Spin-Orbit Coupled Quantum Gases. International Journal of Modern Physics B, 26, Article ID: 1230001.
https://doi.org/10.1142/S0217979212300010
[46]  Liu, F. and Li, J. (2015) Gauge Field Optics with Anisotropic Media. Physical Review Letters, 114, Article ID: 103902.
https://doi.org/10.1103/PhysRevLett.114.103902
[47]  Chen, Y., Zhang, R.-Y., Xiong, Z., Hang, Z.H., Li, J., Shen, J.Q. and Chan, C.T. (2019) Non-Abelian Gauge Field Optics. Nature Communications, 10, Article No. 3125.
https://doi.org/10.1038/s41467-019-10974-8
[48]  Kaluza, T. (1921) Zum Unit?tsproblem in der Physik. Sitzungs-ber Preuss Akad Wiss, Berlin, 966-972.
[49]  Klein, O. (1926) Quantentheorie und fünfdimensionale Relativit?tstheorie. Zeitschrift für Physik, 37, 895-906.
https://doi.org/10.1007/BF01397481
[50]  Overduin, J.M. and Wesson, P.S. (1997) Kaluza-Klein Gravity. Physical Reports, 283, 303-378.
https://doi.org/10.1016/S0370-1573(96)00046-4
[51]  Wikipedia, Kaluza—Klein Theory. https://en.wikipedia.org/wiki/Kaluza–Klein_theory
[52]  Carone, C.D., Conroy, J.M., Sher, M. and Turan, I. (2004) Universal Extra Dimensions and Kaluza-Klein Bound States. Physical Review D, 69, Article ID: 074018.
https://doi.org/10.1103/PhysRevD.69.074018
[53]  Kuyrukcu, H. (2014) The Non-Abelian Weyl—Yang—Kaluza—Klein Gravity Model. General Relativity and Gravitation, 46, Article ID: 1751.
https://doi.org/10.1007/s10714-014-1751-x
[54]  Shen, J.Q. (2009) Gravitational Gauge Theory Developed Based on the Stephenson-Kilmister-Yang Equation. International Journal of Theoretical Physics, 48, 1566-1582.
https://doi.org/10.1007/s10773-009-9929-9
[55]  Shen, J.Q. (2009) A Gravitational Constant and a Cosmological Constant in a Spin-Connection Gravitational Gauge Field Theory. Journal of Physics A: Mathematical & Theoretical, 42, Article ID: 155401.
https://doi.org/10.1088/1751-8113/42/15/155401
[56]  Shen, J.Q. (2016) A Gravitational Gauge Field Theory Based on Stephenson-Kilmister-Yang Gravitation with Scalar and Spinor Fields as Gravitating Matter Sources. General Relativity and Gravity, 48, Article No. 62.
https://doi.org/10.1007/s10714-016-2042-5
[57]  Shen, J.Q. (2016) Gravitational Gauge Theory as a Route to Gravity-Gauge Unification. Gauge Theories and Differential Geometry. Nova Science Publishers, Inc., New York, 97-178.
[58]  Bonati, C., Pelissetto, A. and Vicari, E. (2022) Critical Behaviors of Lattice U(1) Gauge Models and Three-Dimensional Abelian-Higgs Gauge Field Theory. Physical Review B, 105, Article ID: 085112.
https://doi.org/10.1103/PhysRevB.105.085112
[59]  Bonezzi, R., Díaz-Jaramillo, F. and Hohm, O. (2022) The Gauge Structure of Double Field Theory Follows from Yang- Mills Theory. Physical Review D, 106, Article ID: 026004.
https://doi.org/10.1103/PhysRevD.106.026004
[60]  Chagnet, N., Chapman, S., de Boer, J. and Zukowski, C. (2022) Complexity for Conformal Field Theories in General Dimensions. Physical Review Letters, 128, Article ID: 051601.
https://doi.org/10.1103/PhysRevLett.128.051601
[61]  Tong, Y., Albert, V.V., McClean, J.R., Preskill, J. and Su, Y. (2022) Provably Accurate Simulation of Gauge Theories and Bosonic Systems. Quantum, 6, 816.
https://doi.org/10.22331/q-2022-09-22-816
[62]  Mathur, M. and Rathor, A. (2022) SU (N) Toric Code and Non-Abelian Anyons. Physical Review A, 105, Article ID: 052423.
https://doi.org/10.1103/PhysRevA.105.052423
[63]  Fring, A. (2023) An Introduction to PT-Symmetric Quantum Mechanics-Time-Dependent Systems. Journal of Physics: Conference Series, 2448, Article ID: 012002.
https://doi.org/10.1088/1742-6596/2448/1/012002

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133