全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

铁观音茶叶激光诱导等离子体特性研究
Study on the Characteristics of Laser-Induced Plasma in Tieguanyin Tea

DOI: 10.12677/JSTA.2023.114038, PP. 332-341

Keywords: 激光诱导击穿光谱,茶叶,CN自由基,等离子体温度,电子数密度
Laser-Induced Breakdown Spectroscopy
, Tea, CN Free Radical, Plasma Temperature, Electron Density

Full-Text   Cite this paper   Add to My Lib

Abstract:

中国是茶的故乡和发源地,如今茶文化已经传播到世界各地,茶叶是仅次于水的第二大饮料。本文应用激光诱导击穿光谱(LIBS)技术对铁观音茶叶的元素组成进行了研究,发现铁观音茶叶含有Ca、Na、Mg、K、Fe、Cu、Zn、Mn、Sr、Al、Li和Ba等元素,同时还探测到了CN和C2分子的谱线。其次,对激光诱导下铁观音茶叶产生的等离子体特性进行了研究,通过对Hα谱线进行洛伦兹拟合获得电子数密度(Ne)为1.44 × 1017 cm?3,建立Saha-Boltzmann图,计算得等离子体温度(T)为8161 K。最后,使用LIFBASE软件对CN (?△v=0)分子进行模拟,获得振动温度(Tv)和转动温度(Tr)分别为6800 K和5800 K,且这三个温度在实验中满足关系T > Tv > Tr,这个关系与等离子体随时间演化的实际情况相符。
China is the hometown and birthplace of tea. Nowadays, tea culture has spread to all over the world and tea is the second largest beverage after water. In this study, the elemental composi-tion of Tieguanyin tea was studied by laser-induced breakdown spectroscopy (LIBS). Ca, Na, Mg, K, Fe, Cu, Zn, Mn, Sr, Al, Li and Ba were found in Tieguanyin tea. The spectral lines of CN and C2 were also detected. Then, the plasma characteristics of Tieguanyin tea of laser-induction were researched. The electron density (Ne) was 1.44 × 1017 cm?3 by using the Lorentz fitting of the Hα line. The Sa-ha-Boltzmann plot was established, and the plasma temperature (T) was calculated to be 8161 K. Finally, LIFBASE software was used to simulate CN ( △v=0 ) molecule, and the vibration tempera-ture (Tv) and rotation temperature (Tr) were obtained as 6800 K and 5800 K, respectively. In the experiment, the three temperatures met the relationship T > Tv > Tr, which was consistent with the actual situation of plasma evolution over time.

References

[1]  Xu, Y.Q., Chen, S.Q., Shen, D.Y. and Yin, J.F. (2011) Effects of Chemical Components on the Amount of Green Tea Cream. Agricultural Sciences in China, 10, 969-974.
https://doi.org/10.1016/S1671-2927(11)60083-7
[2]  Sun, J.W., Hu, G.R., Liu, K.K., et al. (2019) Potential Exposure to Metals and Health Risks of Metal Intake from Tieguanyin Tea Production in Anxi, China. Environmental Geochemistry and Health, 41, 1291-1302.
https://doi.org/10.1007/s10653-018-0212-y
[3]  Cao, Q.Q., Fu, Y.Q., Wang, J.Q., et al. (2021) Sensory and Chemical Characteristics of Tieguanyin Oolong Tea after Roasting. Food Chemistry: X, 12, Article ID: 100178.
https://doi.org/10.1016/j.fochx.2021.100178
[4]  Wu, H., Hou, D.Y., Hui, R.H., et al. (2013) Lead Chrome Green Determination in Tea by Inductive Coupled Plasma Atomic Emission Spectrometry. Journal of Anshan Normal Univer-sity, 15, 41-43.
[5]  Tokalioglu, S. (2012) Determination of Trace Elements in Commonly Consumed Medicinal Herbs by ICP-MS and Multivariate Analysis. Food Chemistry, 134, 2504-2508.
https://doi.org/10.1016/j.foodchem.2012.04.093
[6]  Li, X.L., Zhou, R.Q., Sun, C.J., et al. (2017) Detection of Lead Chrome Green Illegally Added in Tea Based on Confocal Raman Spectroscopy. Spectroscopy and Spectral Analysis, 37, 461-466.
[7]  Li, X.L., Xu, K.W., Zhang, Y.Y., Sun, C.J. and He, Y. (2017) Optical Determination of Lead Chrome Green in Green Tea by Fourier Transform Infrared (FT-IR) Transmission Spectroscopy. PLOS ONE, 12, e0169430.
https://doi.org/10.1371/journal.pone.0169430
[8]  Shi, J.E., Hua, L., Li, Y.Q., et al. (2019) Determination of Lead Chrome Green in Tea by Ion Chromatography and Spectrophotometry. Journal of Food Safety and Quality, 10, 1534-1540.
[9]  Guo, X.H., Zhao, P., Wu, Y.Q., et al. (2022) Application of XRF and ICP-MS in Elements Content Determinations of Tieguanyin of Anxi and Hua’an County, Fujian Province. Spectroscopy and Spectral Analysis, 42, 3124-3129.
[10]  Nasrazadani, S. and Namduri, H. (2006) Study of Phase Transformation in Iron Oxides Using Laser Induced Breakdown Spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 61, 565-571.
https://doi.org/10.1016/j.sab.2006.04.001
[11]  刘烨坤. 激光诱导击穿土壤重金属光谱增强及定量分析方法研究[D]: [硕士学位论文]. 太原: 中北大学, 2022.
[12]  Zhang, Q.H., Liu, Y.Z., Yin, W.Y., et al. (2020) The in situ De-tection of Smoking in Public Area by Laser-Induced Breakdown Spectroscopy. Chemosphere, 242, Article ID: 125184.
https://doi.org/10.1016/j.chemosphere.2019.125184
[13]  Ding, Y., Xia, G.Y., Ji, H.W. and Xiong, X. (2019) Ac-curate Quantitative Determination of Heavy Metals in Oily Soil by Laser Induced Breakdown Spectroscopy (LIBS) Combined with Interval Partial Least Squares (IPLS). Analytical Methods, 11, 3657-3664.
https://doi.org/10.1039/C9AY01030K
[14]  Tian, Y., Chen, Q., Lin, Y.Q., et al. (2021) Quantitative Determination of Phosphorus in Seafood Using Laser-Induced Breakdown Spectroscopy Combined with Machine Learning. Spectro-chimica Acta Part B: Atomic Spectroscopy, 175, Article ID: 106027.
https://doi.org/10.1016/j.sab.2020.106027
[15]  Teng, G., Wang, Q.Q., Yang, H.F., et al. (2020) Pathological Iden-tification of Brain Tumors Based on the Characteristics of Molecular Fragments Generated by Laser Ablation Combined with a Spiking Neural Network. Biomedical Optics Express, 11, 4276-4289.
https://doi.org/10.1364/BOE.397268
[16]  Singh, J.P. and Thakur, S.N. (2020) Laser-Induced Breakdown Spec-troscopy. Elsevier, Amsterdam.
[17]  陈宇. 基于激光光谱技术的大气硫化物在线探测[D]: [硕士学位论文]. 南京: 南京信息工程大学, 2022.
[18]  何亚雄, 周文琦, 柯川, 等. 激光诱导击穿光谱技术在气体检测中的研究综述[J]. 光谱学与光谱分析, 2021, 41(9): 2681-2687.
[19]  Dietz, T., Kohns, P. and Ankerhold, G. (2018) Diagnostics and Simulations of Molecular Formation in Laser-Induced Plasmas. Spectrochimica Acta Part B: Atomic Spectroscopy, 148, 51-59.
https://doi.org/10.1016/j.sab.2018.06.007
[20]  Kramida, A., Ralchenko, Y., Reader, J., et al. (2022) NIST Atomic Spectra Database (Version 5.10). National Institute of Standards and Technology, Gaithersburg.
[21]  Gondal, M.A., Habibullah, Y.B., Baig, U. and Oloore, L.E. (2016) Direct Spectral Analysis of Tea Samples Using 266nm UV Pulsed Laser-Induced Breakdown Spectroscopy and Cross Validation of LIBS Results with ICP-MS. Talanta, 152, 341-352.
https://doi.org/10.1016/j.talanta.2016.02.030
[22]  Rehan, I., Gondal, M.A., Aldakheel, R.K., et al. (2022) Determination of Nutritional and Toxic Metals in Black Tea Leaves Using Calibration Free LIBS and ICP: AES Tech-nique. Arabian Journal for Science and Engineering, 47, 7531-7539.
https://doi.org/10.1007/s13369-021-06233-y
[23]  Lu, X., Liu, Y.Z., Zhang, Q.H. and Li, L. (2020) Study on Tea Harvested in Different Seasons Based on Laser-Induced Breakdown Spectroscopy. Laser Physics Letters, 17, Article ID: 015701.
https://doi.org/10.1088/1612-202X/ab5c23
[24]  CabalíN, L.M., Delgado, T., Garcia-Gomez, L. and Laserna, J.J. (2020) Considerations on Formation Mechanisms of Emitting Species of Organic and C-Containing Inorganic Com-pounds in CO2 Atmosphere Using Laser-Induced Breakdown Spectroscopy as a Strategy for Detection of Molecular Solids. Spectrochimica Acta Part B: Atomic Spectroscopy, 169, Article ID: 105869.
https://doi.org/10.1016/j.sab.2020.105869
[25]  Zhang, Q., Liu, Y., Yin, W., et al. (2020) The Online Detection of Carbon Isotopes by Laser-Induced Breakdown Spectroscopy. Journal of Analytical Atomic Spectrometry, 35, 341-346.
https://doi.org/10.1039/C9JA00384C
[26]  Zhangcheng, Y.Z., Liu, Y.Z., Saleem, S., et al. (2020) Online in situ Detection and Rapid Distinguishing of Saffron. Journal of Laser Applications, 32, Article ID: 032020.
https://doi.org/10.2351/7.0000137
[27]  Civis, M., Civis, S., Sovova, K., et al. (2011) Laser Ablation of FOX-7: Proposed Mechanism of Decomposition. Analytical Chemistry, 83, 1069-1077.
https://doi.org/10.1021/ac1028769
[28]  Wang, J.M., Zheng, P.C., Liu, H.D. and Fang, L. (2016) Classification of Chinese Tea Leaves Using Laser-Induced Breakdown Spectroscopy Combined with the Discriminant Analysis Method. Analytical Methods, 8, 3204-3209.
https://doi.org/10.1039/C5AY03260A
[29]  Portnov, A., Rosenwaks, S. and Bar, I. (2003) Emission following Laser-Induced Breakdown Spectroscopy of Organic Compounds in Ambient Air. Applied Optics, 42, 2835-2842.
https://doi.org/10.1364/AO.42.002835
[30]  Yan, Y.H., Liu, Y.Z., Zhang, Q.H. and Ding, P.F. (2020) Correlation between Laser-Induced Plasma Temperature and CN Radical Molecule Emission during Tree Burning. Optik, 224, Article ID: 165670.
https://doi.org/10.1016/j.ijleo.2020.165670
[31]  Ciucci, A., Corsi, M., Palleschi, V., et al. (1999) New Procedure for Quantitative Elemental Analysis by Laser-Induced Plasma Spectroscopy. Applied Spectroscopy, 53, 960-964.
https://doi.org/10.1366/0003702991947612
[32]  Tognoni, E., Cristoforetti, G., Legnaloli, S., et al. (2007) A Nu-merical Study of Expected Accuracy and Precision in Calibration-Free Laser-Induced Breakdown Spectroscopy in the Assumption of Ideal Analytical Plasma. Spectrochimica Acta Part B: Atomic Spectroscop, 62, 1287-1302.
https://doi.org/10.1016/j.sab.2007.10.005
[33]  Gigosos, M.A., Gonzalez, M.A. and Cardenoso, V. (2003) Com-puter Simulated Balmer-α, -β and -γ Stark Line Profiles for Non-Equilibrium Plasmas Diagnostics. Spectrochimica Acta Part B: Atomic Spectroscop, 58, 1489-1504.
https://doi.org/10.1016/S0584-8547(03)00097-1
[34]  Gaft, M., Nagli, L., Gornushkin, I. and Raichlin, Y. (2020) Review on Recent Advances in Analytical Applications of Molecular Emission and Modelling. Spectrochimica Acta Part B: Atomic Spectroscopy, 173, Article ID: 105989.
https://doi.org/10.1016/j.sab.2020.105989

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133