全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

IgAN治疗研究进展
Research Progress in the Treatment of IgA Nephropathy

DOI: 10.12677/ACM.2023.1371546, PP. 11080-11087

Keywords: IgA肾病,RAS抑制剂,糖皮质激素,免疫抑制剂,靶向治疗,免疫系统,SGLT2,扁桃体切除
IgA Nephropathy
, RAS Inhibitor, Glucocorticoid, Immunosuppressive Drug, Targeted Therapy, Im-mune System, SGLT2, Tonsillectomy

Full-Text   Cite this paper   Add to My Lib

Abstract:

IgA肾病(IgAN)是肾脏病中最为常见的一种类型,随着对IgA肾病认识的进一步加深,发现其目前无法治愈,发展到后期需要肾脏血液净化治疗,目前治疗目标以减少蛋白尿、控制血压、延长进展至末期时间为主。IgA肾病目前主要治疗方法包括RAS抑制剂的使用,糖皮质激素联合免疫抑制剂等,近些年随着IgA肾病发病机制研究加深,出现了许多新型治疗方案,本文就IgA肾病主流治疗及其进展进行综述。
IgA nephropathy (IgAN) is one of the most common types of kidney disease. With the further deep-ening of the understanding of IgA nephropathy, it is found that it cannot be cured at present, and it needs renal blood purification treatment in the later stage. At present, the treatment objectives are mainly to reduce proteinuria, control blood pressure and prolong the time of progression to the end stage. At present, the main treatment methods of IgA nephropathy include the use of RAS inhibitors, glucocorticoid combined with immunosuppressants, etc. In recent years, with the deepening of the pathogenesis of IgA nephropathy research, many new treatment schemes have appeared. This pa-per reviews the mainstream treatment of IgA nephropathy and its progress.

References

[1]  Shabgah, A.G., Shariati-Sarabi, Z., Tavakkol-Afshari, J., et al. (2019) The Role of BAFF and APRIL in Rheumatoid Arthritis. Journal of Cellular Physiology, 234, 17050-17063.
https://doi.org/10.1002/jcp.28445
[2]  Barratt, J., Tumlin, J., Suzuki, Y., et al. (2022) Randomized Phase II JANUS Study of Atacicept in Patients with IgA Nephropathy and Persistent Proteinuria. Kidney International Reports, 7, 1831-1841.
https://doi.org/10.1016/j.ekir.2022.05.017
[3]  Mathur, M., Barratt, J., Suzuki, Y., et al. (2022) Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of VIS649 (Sibeprenlimab), an APRIL-Neutralizing IgG Monoclonal Anti-body, in Healthy Volunteers. Kidney International Reports, 7, 993-1003.
https://doi.org/10.1016/j.ekir.2022.01.1073
[4]  Stefan, G. and Mircescu, G. (2021) Hydroxychloroquine in IgA Nephropathy: A Systematic Review. Renal Failure, 43, 1520-1527.
https://doi.org/10.1080/0886022X.2021.2000875
[5]  Liu, L.-J., Yang, Y.-Z., Shi, S.-F., et al. (2019) Effects of Hydroxychloroquine on Proteinuria in IgA Nephropathy: A Randomized Controlled Trial. American Journal of Kidney Diseases, 74, 15-22.
https://doi.org/10.1053/j.ajkd.2019.01.026
[6]  Poppelaars, F., Faria, B., Schwaeble, W. and Daha, M.R. (2021) The Contribution of Complement to the Pathogenesis of IgA Nephropathy: Are Complement-Targeted Therapies Moving from Rare Disorders to More Common Diseases? Journal of Clinical Medicine 10, Article No. 4715.
https://doi.org/10.3390/jcm10204715
[7]  Rosenblad, T., Rebetz, J., Johansson, M., et al. (2014) Eculizumab Treatment for Rescue of Renal Function in IgA Nephropathy. Pediatric Nephrology, 29, 2225-2228.
https://doi.org/10.1007/s00467-014-2863-y
[8]  Ring, T., Pedersen, B.B., Salkus, G., et al. (2015) Use of Eculi-zumab in Crescentic IgA Nephropathy: Proof of Principle and Conundrum? Clinical Kidney Journal, 8, 489-491.
https://doi.org/10.1093/ckj/sfv076
[9]  Lafayette, R.A., Rovin, B.H., Reich, H.N., et al. (2020) Safety, Tolerability and Efficacy of Narsoplimab, a Novel MASP-2 Inhibitor for the Treatment of IgA Nephropathy. Kidney International Reports, 5, 2032-2041.
https://doi.org/10.1016/j.ekir.2020.08.003
[10]  Sano, R., Shinozaki, Y. and Ohta, T. (2020) Sodium-Glucose Co-transporters: Functional Properties and Pharmaceutical Potential. Journal of Diabetes Investigation, 11, 770-782.
https://doi.org/10.1111/jdi.13255
[11]  Barratt, J. and Floege, J. (2021) SGLT-2 Inhibition in IgA Nephropathy: The New Standard of Care? Kidney International, 100, 24-26.
https://doi.org/10.1016/j.kint.2021.04.002
[12]  Heerspink, H.J.L., Stefánsson, B.V., Correa-Rotter, R., et al. (2020) Dapagliflozin in Patients with Chronic Kidney Disease. The New England Journal of Medicine, 383, 1436-1446.
https://doi.org/10.1056/NEJMoa2024816
[13]  Wheeler, D.C., Toto, R.D., Stefánsson, B.V., et al. (2021) A Pre-Specified Analysis of the DAPA-CKD Trial Demonstrates the Effects of Dapagliflozin on Major Adverse Kidney Events in Patients with IgA Nephropathy. Kidney International, 100, 215-224.
https://doi.org/10.1016/j.kint.2021.03.033
[14]  Berger, J. and Hinglais, N. (1968) Intercapillary Deposits of IgA-IgG. Journal of Urology and Nephrology (Paris), 74, 694-695.
[15]  Wang, J.Y., He, L.Y., Yan, W.Z., et al. (2020) The Role of Hypertriglyceridemia and Treatment Patterns in the Progression of IgA Nephropathy with a High Proportion of Global Glomerulosclerosis. International Urology and Nephrology, 52, 325-335.
https://doi.org/10.1007/s11255-019-02371-3
[16]  Haas, M. (2005) Histology and Im-munohistology of IgA Nephropathy. Journal of Nephrology, 18, 676-680.
[17]  蒋文婷, 张红, 李贵森. 无症状性IgA肾病的临床及病理特点分析[J]. 实用医院临床杂志, 2023, 20(3): 36-40.
[18]  Kidney Disease: Improving Global Outcomes (KDIGO) Glomerular Diseases Work Group (2021) KDIGO 2021 Clinical Practice Guideline for the Man-agement of Glomerular Diseases. Kidney International, 100, S1-S276.
[19]  Ji, Y., Yang, K., Xiao, B., et al. (2019) Ef-ficacy and Safety of Angiotensin-Converting Enzyme Inhibitors/Angiotensin Receptor Blocker Therapy for IgA Nephropathy: A Meta-Analysis of Randomized Controlled Trials. Journal of Cellular Biochemistry, 120, 3689-3695.
https://doi.org/10.1002/jcb.27648
[20]  Lv, J.C., Zhang, H., Wong, M.G., et al. (2017) Effect of Oral Methylpred-nisolone on Clinical Outcomes in Patients with IgA Nephropathy: The TESTING Randomized Clinical Trial. JAMA, 318, 432-442.
https://doi.org/10.1001/jama.2017.9362
[21]  王梦平, 孙健超, 金畅, 董建华, 唐诗韵. 足量泼尼松联合环磷酰胺治疗IgA肾病的疗效及影响因素[J]. 医药导报, 2023: 1-16.
[22]  Hou, J.-H., Le, W.-B., Chen, N., et al. (2017) Mycophenolate Mofetil Combined with Prednisone versus Full-Dose Prednisone in IgA Nephropathy with Active Pro-liferative Lesions: A Randomized Controlled Trial. American Journal of Kidney Diseases, 69, 788-795.
https://doi.org/10.1053/j.ajkd.2016.11.027
[23]  Pensieri, M.V., Pulvirenti, F., Schiepatti, A., et al. (2019) The High Mortality of Patients with Common Variable Immunodeficiency and Small Bowel Villous Atrophy. Scandinavian Jour-nal of Gastroenterology, 54, 164-168.
https://doi.org/10.1080/00365521.2019.1568543
[24]  Coppo, R. (2018) The Gut-Renal Connection in IgA Nephropathy. Seminars in Nephrology, 38, 504-512.
https://doi.org/10.1016/j.semnephrol.2018.05.020
[25]  Floege, J. (2017) Mucosal Corticosteroid Therapy of IgA Nephropathy. Kidney International, 92, 278-280.
https://doi.org/10.1016/j.kint.2017.05.021
[26]  Suzuki, H., Kiryluk, K., Novak, J., Moldoveanu, Z., Herr, A.B., Renfrow, M.B., Wyatt, R.J., Scolari, F., Mestecky, J., Gharavi, A.G. and Julian, B.A. (2011) The Pathophysiology of IgA Nephropathy. Journal of the American Society of Nephrology, 22, 1795-1803.
https://doi.org/10.1681/ASN.2011050464
[27]  Fellstr?m, B.C., Barratt, J., Cook, H., et al. (2017) Target-ed-Release Budesonide versus Placebo in Patients with IgA Nephropathy (NEFIGAN): A Double-Blind, Randomised, Placebo-Controlled Phase 2b Trial. The Lancet, 389, 2117-2127.
https://doi.org/10.1016/S0140-6736(17)30550-0
[28]  Sallustio, F., Curci, C., Chaoul, N., et al. (2021) High Levels of Gut-Homing Immunoglobulin A+ B Lymphocytes Support the Pathogenic Role of Intestinal Mucosal Hyperrespon-siveness in Immunoglobulin A Nephropathy Patients. Nephrology Dialysis Transplantation, 36, 1765.
https://doi.org/10.1093/ndt/gfaa344
[29]  Zhong, Z.X., Tan, J.X., Tan, L., et al. (2020) Modifications of Gut Micro-biota Are Associated with the Severity of IgA Nephropathy in the Chinese Population. International Immunopharma-cology, 89, Article ID: 107085.
https://doi.org/10.1016/j.intimp.2020.107085
[30]  Chemouny, J.M., Gleeson, P.J., Abbad, L., et al. (2019) Modu-lation of the Microbiota by Oral Antibiotics Treats Immunoglobulin A Nephropathy in Humanized Mice. Nephrology Di-alysis Transplantation, 34, 1135-1144.
https://doi.org/10.1093/ndt/gfy323
[31]  Lafayette, R.A., Canetta, P.A., Rovin, B.H., et al. (2017) A Randomized, Controlled Trial of Rituximab in IgA Nephropathy with Proteinuria and Renal Dysfunction. Journal of the American So-ciety of Nephrology, 28, 1306-1313.
https://doi.org/10.1681/ASN.2016060640
[32]  Hartono, C., Chung, M., Perlman, A.S., et al. (2018) Bortezomib for Reduction of Proteinuria in IgA Nephropathy. Kidney International Reports, 3, 861-866.
https://doi.org/10.1016/j.ekir.2018.03.001
[33]  Takahara, M., Nagato, T., Nozaki, Y., et al. (2019) A Prolifera-tion-Inducing Ligand (APRIL) Induced Hyper-Production of IgA from Tonsillar Mononuclear Cells in Patients with IgA Nephropathy. Cellular Immunology, 341, Article ID: 103925.
https://doi.org/10.1016/j.cellimm.2019.103925
[34]  Baert, L., Manfroi, B., Casez, O., et al. (2018) The Role of APRIL—a Proliferation Inducing Ligand—in Autoimmune Diseases and Expectations from Its Targeting. Journal of Autoimmunity, 95, 179-190.
https://doi.org/10.1016/j.jaut.2018.10.016
[35]  D?rner, T., Kinnman, N. and Tak, P.P. (2010) Targeting B Cells in Immune-Mediated Inflammatory Disease: A Comprehensive Review of Mechanisms of Action and Identification of Bi-omarkers. Pharmacology & Therapeutics, 125, 464-475.
https://doi.org/10.1016/j.pharmthera.2010.01.001
[36]  Samy, E., Wax, S., Huard, B., et al. (2017) Targeting BAFF and APRIL in Systemic Lupus Erythematosus and Other Antibody-Associated Diseases. International Reviews of Im-munology, 36, 3-19.
https://doi.org/10.1080/08830185.2016.1276903
[37]  Li, Y., Wan, Q., Lan, Z.X., et al. (2022) Efficacy and Indications of Tonsillectomy in Patients with IgA Nephropathy: A Retrospective Study. PeerJ, 10, e14481.
https://doi.org/10.7717/peerj.14481

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133