全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

肝细胞癌中的铁死亡与氧化应激
Ferroptosis and Oxidative Stress in Hepatic Cellular Carcinoma

DOI: 10.12677/HJBM.2023.133034, PP. 293-302

Keywords: 肝细胞癌,氧化应激,活性氧,铁死亡
Hepatic Cellular Carcinoma
, Oxidative Stress, Active Oxygen, Ferroptosis

Full-Text   Cite this paper   Add to My Lib

Abstract:

肝细胞癌(Hepatic Cellular Carcinoma, HCC)是全球发病率较高的癌症之一且其死亡率在全球每年持续增加约2%~3%。氧化应激(Oxidative Stress, OS)是指当生物体细胞在遭遇外界刺激时,机体细胞内部产生大量超氧化物,如单线态氧(1O2)、过氧化氢(H2O2),超氧阴离子(O2-)等,这些物质致机体细胞内氧化与抗氧化作用失衡,最终导致细胞和组织的损伤。氧化应激被认为是恶性肿瘤的起因之一。铁死亡(Ferroptosis)是近年发现的一种铁依赖性的新型细胞程序性死亡方式。本文主要阐述了肝细胞癌中氧化应激对铁死亡的影响的相关研究进展。
Hepatic cellular carcinoma (HCC) is one of the most prevalent cancers worldwide, whose mortality rate continues to increase by about 2%~3% per year. Oxidative stress (OS) refers to the production of a large amount of superoxide inside the body when the organism cells are exposed to external stimuli, such as singlet oxygen (1O2), hydrogen peroxide (H2O2), superoxide anions (O2-), etc. These substances cause the imbalance of oxidation and antioxidant in the body’s cells, and eventually lead to damage to cells and tissues. Oxidative stress is thus considered to be one of the major causes of malignant tumors. Ferroptosis is a novel form of iron-dependent programmed cell death discovered in recent years. This article mainly describes the research progress on the effects of oxidative stress on ferroptosis in hepatocellular carcinoma.

References

[1]  Jemal, A., Ward, E.M., et al. (2017) Annual Report to the Nation on the Status of Cancer, 1975-2014, Featuring Survival. JNCI: Journal of the National Cancer Institute, 109, djx030.
https://doi.org/10.1093/jnci/djx030
[2]  Villanueva, A. (2019) Hepatocellular Carcinoma. The New England Journal of Medicine, 380, 1450-1462.
https://doi.org/10.1056/NEJMra1713263
[3]  Chen, Z., Xie, H., Hu, M., et al. (2020) Recent Progress in Treatment of Hepatocellular Carcinoma. American Journal of Cancer Research, 10, 2993-3036.
[4]  Bruix, J., Cheng, A.L., Meinhardt, G., et al. (2017) Prognostic Factors and Predictors of Sorafenib Benefit in Patients with Hepatocellular Carcinoma: Analysis of Two-Phase III Studies. Journal of Hepatology, 67, 999-1008.
https://doi.org/10.1016/j.jhep.2017.06.026
[5]  Kudo, M., Finn, R.S., Qin, S., et al. (2018) Lenvatinib versus Sorafenib in First-Line Treatment of Patients with Unresectable Hepatocellular Carcinoma: A Randomized Phase 3 Non-Inferiority Trial. The Lancet, 391, 1163-1173.
https://doi.org/10.1016/S0140-6736(18)30207-1
[6]  Wang, Y., Zheng, L., Shang, W., et al. (2022) Wnt/β-Catenin Signaling Confers Ferroptosis Resistance by Targeting GPX4 in Gastric Cancer. Cell Death and Differentiation, 29, 2190-2202.
https://doi.org/10.1038/s41418-022-01008-w
[7]  Morales, M. and Xue, X. (2021) Targeting Iron Metabolism in Cancer Therapy. Theranostics, 11, 8412-8429.
https://doi.org/10.7150/thno.59092
[8]  Li, J., Cao, F., Yin, H.L., et al. (2020) Ferroptosis: Past, Present and Future. Cell Death & Disease, 11, Article No. 88.
https://doi.org/10.1038/s41419-020-2298-2
[9]  Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072.
https://doi.org/10.1016/j.cell.2012.03.042
[10]  Cairns, R.A., Harris, I.S. and Mak, T.W. (2011) Regulation of Cancer Cell Metabolism. Nature Reviews Cancer, 11, 85-95.
https://doi.org/10.1038/nrc2981
[11]  Diehn, M., Cho, R.W., Lobo, N.A., et al. (2009) Association of Reactive Oxygen Species Levels and Radio-Resistance in Cancer Stem Cells. Nature, 458, 780-783.
https://doi.org/10.1038/nature07733
[12]  Kenny, E.F., Herzig, A., Krüger, R., et al. (2017) Diverse Stimuli Engage Different Neutrophil Extracellular Trap Pathways. eLife, 6, e24437.
https://doi.org/10.7554/eLife.24437
[13]  Jones, R.M. and Neish, A.S. (2017) Redox Signaling Mediated by the Gut Microbiota. Free Radical Biology & Medicine, 105, 41-47.
https://doi.org/10.1016/j.freeradbiomed.2016.10.495
[14]  Nathan, C. and Cunningham-Bussel, A. (2013) Beyond Oxidative Stress: An Immunologist’s Guide to Reactive Oxygen Species. Nature Reviews Immunology, 13, 349-361.
https://doi.org/10.1038/nri3423
[15]  Salehi, F., Behboudi, H., Kavoosi, G. and Ardestani, S.K. (2018) Oxidative DNA Damage Induced by ROS-Modulating Agents with the Ability to Target DNA: A Comparison of the Biological Characteristics of Citrus Pectin and Apple Pectin. Scientific Reports, 8, Article No. 13902.
https://doi.org/10.1038/s41598-018-32308-2
[16]  Shokolenko, I., Venediktova, N., Bochkareva, A., Wilson, G.L. and Alexeyev, M.F. (2009) Oxidative Stress Induces Degradation of Mitochondrial DNA. Nucleic Acids Research, 37, 2539-2548.
https://doi.org/10.1093/nar/gkp100
[17]  Chocry, M. and Leloup, L. (2020) The NADPH Oxidase Family and Its Inhibitors. Antioxidants & Redox Signaling, 33, 332-353.
https://doi.org/10.1089/ars.2019.7915
[18]  Li, R., Jia, Z. and Trush, M.A. (2016) Defining ROS in Biology and Medicine. Reactive Oxygen Species, 1, 9-21.
https://doi.org/10.20455/ros.2016.803
[19]  Zorov, D.B., Juhaszova, M. and Sollott, S.J. (2014) Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release. Physiological Reviews, 94, 909-950.
https://doi.org/10.1152/physrev.00026.2013
[20]  Kang, S.W., Lee, S. and Lee, E.K. (2015) ROS and Energy Metabolism in Cancer Cells: Alliance for Fast Growth. Archives of Pharmacal Research, 38, 338-345.
https://doi.org/10.1007/s12272-015-0550-6
[21]  Valko, M., Leibfritz, D., Moncol, J., et al. (2007) Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease. International Journal of Biochemistry & Cell Biology, 39, 44-84.
https://doi.org/10.1016/j.biocel.2006.07.001
[22]  He, L., He, T., Farrar, S., et al. (2017) Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species. Cellular Physiology and Biochemistry, 44, 532-553.
https://doi.org/10.1159/000485089
[23]  Scortegagna, M., Ding, K., Oktay, Y., et al. (2003) Multiple Organ Pathology, Metabolic Abnormalities and Impaired Homeostasis of Reactive Oxygen Species in Epas1?/? Mice. Nature Genetics, 35, 331-340.
https://doi.org/10.1038/ng1266
[24]  Leavy, O. (2014) Inflammation: Regulating ROS. Nature Reviews Immunology, 14, Article No. 357.
https://doi.org/10.1038/nri3685
[25]  Park, E. and Chung, S.W. (2019) ROS-Mediated Autophagy Increases Intracellular Iron Levels and Ferroptosis by Ferritin and Transferrin Receptor Regulation. Cell Death & Disease, 10, Article No. 822.
https://doi.org/10.1038/s41419-019-2064-5
[26]  Moloney, J.N. and Cotter, T.G. (2018) ROS Signaling in the Biology of Cancer. Seminars in Cell & Developmental Biology, 80, 50-64.
https://doi.org/10.1016/j.semcdb.2017.05.023
[27]  Fan, X.X., Pan, H.D., Li, Y., et al. (2018) Novel Therapeutic Strategy for Cancer and Autoimmune Conditions: Modulating Cell Metabolism and Redox Capacity. Pharmacology & Therapeutics, 191, 148-161.
https://doi.org/10.1016/j.pharmthera.2018.06.010
[28]  武一凡, 卢娜. 基于细胞氧化还原平衡的抗肿瘤新靶点及其药物的研究进展[J]. 世界最新医学信息文摘, 2019(30): 3.
[29]  Wang, K., Jiang, J., Lei, Y., et al. (2019) Targeting Metabolic-Redox Circuits for Cancer Therapy. Trends in Biochemical Sciences, 44, 401-414.
https://doi.org/10.1016/j.tibs.2019.01.001
[30]  Trachootham, D., Alexandre, J. and Huang, P. (2009) Targeting Cancer Cells by ROS-Mediated Mechanisms: A Radical Therapeutic Approach? Nature Reviews Drug Discovery, 8, 579-591.
https://doi.org/10.1038/nrd2803
[31]  Marinho, H.S., Real, C., Cyrne, L., Soares, H. and Antunes, F. (2014) Hydrogen Peroxide Sensing, Signaling and Regulation of Transcription Factors. Redox Biology, 2, 535-562.
https://doi.org/10.1016/j.redox.2014.02.006
[32]  Jones, D.P. (2008) Radical-Free Biology of Oxidative Stress. American Journal of Physiology-Cell Physiology, 295, C849-C868.
https://doi.org/10.1152/ajpcell.00283.2008
[33]  Zhang, W., Xiao, S. and Ahn, D.U. (2013) Protein Oxidation: Basic Principles and Implications for Meat Quality. Critical Reviews in Food Science and Nutrition, 53, 1191-1201.
https://doi.org/10.1080/10408398.2011.577540
[34]  Mohsin, A., Haneef, K., Ilyas, A., Zarina, S. and Hashim, Z. (2021) Oxidative Stress Induced Cell Cycle Arrest: Potential Role of PRX-2 and GSTP-1 as Therapeutic Targets in Hepatocellular Carcinoma. Protein and Peptide Letters, 28, 1323-1329.
https://doi.org/10.2174/0929866528666211105105953
[35]  Maki, A., Kono, H., Gupta, M., et al. (2007) Predictive Power of Biomarkers of Oxidative Stress and Inflammation in Patients with Hepatitis C Virus-Associated Hepatocellular Carcinoma. Annals of Surgical Oncology, 14, 1182-1190.
https://doi.org/10.1245/s10434-006-9049-1
[36]  Halliwell, B. (2000) Why and How Should We Measure Oxidative Damage in Nutritional Studies? How Far Could You Come? American Journal of Clinical Nutrition, 72, 1082-1087.
https://doi.org/10.1093/ajcn/72.5.1082
[37]  Tanaka, H., Fujita, N., Sugimoto, R., et al. (2008) Hepatic Oxidative DNA Damage Is Associated with Increased Risk for Hepatocellular Carcinoma in Chronic Hepatitis C. British Journal of Cancer, 98, 580-586.
https://doi.org/10.1038/sj.bjc.6604204
[38]  Lee, Y.K., Youn, H.G., Wang, H.J. and Yoon, G. (2013) Decreased Mitochondrial OGG1 Expression Is Linked to Mitochondrial Defects and Delayed Hepatoma Cell Growth. Molecules and Cells, 35, 489-497.
https://doi.org/10.1007/s10059-013-2343-4
[39]  Gorrini, C., Harris, I.S. and Mak, T.W. (2013) Modulation of Oxidative Stress as an Anticancer Strategy. Nature Reviews Drug Discovery, 12, 931-947.
https://doi.org/10.1038/nrd4002
[40]  Dou, C., Xu, Q., Liu, J., et al. (2019) SHMT1 Inhibits the Metastasis of HCC by Repressing NOX1-Mediated ROS Production. Journal of Experimental & Clinical Cancer Research, 38, Article No. 70.
https://doi.org/10.1186/s13046-019-1067-5
[41]  Li, C., Chen, J., Li, Y., et al. (2021) 6-Phosphogluconolactonase Promotes Hepatocellular Carcinogenesis by Activating Pentose Phosphate Pathway. Frontiers in Cell and Developmental Biology, 9, Article 753196.
https://doi.org/10.3389/fcell.2021.753196
[42]  Li, K.K., Ng, I.O., Fan, S.T., et al. (2002) Activation of Cyclin-Dependent Kinases CDC2 and CDK2 in Hepatocellular Carcinoma. Liver International, 22, 259-268.
https://doi.org/10.1046/j.0106-9543.2002.01629.x
[43]  Suski, J.M., Braun, M., Strmiska, V. and Sicinski, P. (2021) Targeting Cell-Cycle Machinery in Cancer. Cancer Cell, 39, 759-778.
https://doi.org/10.1016/j.ccell.2021.03.010
[44]  Gu, C., Yao, J. and Sun, P. (2017) Dynamin 3 Suppresses Growth and Induces Apoptosis of Hepatocellular Carcinoma Cells by Activating Inducible Nitric Oxide Synthase Production. Oncology Letters, 13, 4776-4784.
https://doi.org/10.3892/ol.2017.6057
[45]  Dolma, S., Lessnick, S.L., Hahn, W.C. and Stockwell, B.R. (2003) Identification of Genotype-Selective Antitumor Agents Using Synthetic Lethal Chemical Screening in Engineered Human Tumor Cells. Cancer Cell, 3, 285-296.
https://doi.org/10.1016/S1535-6108(03)00050-3
[46]  Yang, W.S. and Stockwell, B.R. (2008) Synthetic Lethal Screening Identifies Compounds Activating Iron-Dependent, Nonapoptotic Cell Death in Oncogenic-RAS-Harboring Cancer Cells. Chemistry & Biology, 15, 234-245.
https://doi.org/10.1016/j.chembiol.2008.02.010
[47]  Tu, H., Tang, L.J., Luo, X.J., et al. (2021) Insights into the Novel Function of System Xc- in Regulated Cell Death. European Review for Medical and Pharmacological Sciences, 25, 1650-1662.
[48]  Forcina, G.C. and Dixon, S.J. (2019) GPX4 at the Crossroads of Lipid Homeostasis and Ferroptosis. Proteomics, 19, e1800311.
https://doi.org/10.1002/pmic.201800311
[49]  Mei, F., Liu, Y. and Zheng, S. (2022) Rhamnazin Inhibits Hepatocellular Carcinoma Cell Aggressiveness in vitro via Glutathione Peroxidase 4-Dependent Ferroptosis. Tohoku Journal of Experimental Medicine, 258, 111-120.
https://doi.org/10.1620/tjem.2022.J061
[50]  Jin, M., Shi, C., Li, T., et al. (2020) Solasonine Promotes Ferroptosis of Hepatoma Carcinoma Cells via Glutathione Peroxidase 4-Induced Destruction of the Glutathione Redox System. Biomedicine & Pharmacotherapy, 129, Article ID: 110282.
https://doi.org/10.1016/j.biopha.2020.110282
[51]  Yanatori, I. and Kishi, F. (2019) DMT1 and Iron Transport. Free Radical Biology and Medicine, 133, 55-63.
https://doi.org/10.1016/j.freeradbiomed.2018.07.020
[52]  Gammella, E., Buratti, P., Cairo, G. and Recalcati, S. (2017) The Transferrin Receptor: The Cellular Iron Gate. Metallomics, 9, 1367-1375.
https://doi.org/10.1039/C7MT00143F
[53]  Yu, H., Yang, C., Jian, L., et al. (2019) Sulfasalazine Induced Ferroptosis in Breast Cancer Cells Is Reduced by the Inhibitory Effect of Estrogen Receptor on the Transferrin Receptor. Oncology Reports, 42, 826-838.
https://doi.org/10.3892/or.2019.7189
[54]  Yang, W.S., Kim, K.J., Gaschler, M.M., et al. (2016) Peroxidation of Polyunsaturated Fatty Acids by Lipoxygenases Drives Ferroptosis. Proceedings of the National Academy of Sciences of the United States of America, 113, E4966-E4975.
https://doi.org/10.1073/pnas.1603244113
[55]  Lim, K., Han, C., Dai, Y., Shen, M. and Wu, T. (2009) ω-3 Polyunsaturated Fatty Acids Inhibit Hepatocellular Carcinoma Cell Growth through Blocking β-Catenin and Cyclooxygenase-2. Molecular Cancer Therapeutics, 8, 3046-3055.
https://doi.org/10.1158/1535-7163.MCT-09-0551
[56]  Sun, X.F., Ou, Z.H., Chen, R.C., et al. (2016) Activation of the p62-Keap1-NRF2 Pathway Protects against Ferroptosis in Hepatocellular Carcinoma Cells. Hepatology, 63, 173-184.
https://doi.org/10.1002/hep.28251
[57]  Ghareghomi, S., Habibi-Rezaei, M., Arese, M., Saso, L. and Moosavi-Movahedi, A.A. (2022) Nrf2 Modulation in Breast Cancer. Biomedicines, 10, Article 2668.
https://doi.org/10.3390/biomedicines10102668
[58]  Li, Y., Chen, L., Gao, Y., Zou, X.N. and Wei, F.X. (2022) Oxidative Stress and Intervertebral Disc Degeneration: Pathophysiology, Signaling Pathway, and Therapy. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 1984742.
https://doi.org/10.1155/2022/1984742
[59]  Feng, X., Jiang, T., Yang, C., et al. (2021) RPRD1A Stabilizes NRF2 and Aggravates HCC Progression through Competing with p62 for TRIM21 Binding. Cell Death &Disease, 13, Article No. 6.
https://doi.org/10.1038/s41419-021-04447-4
[60]  Aning, O.A. and Cheok, C.F. (2019) Drugging in the Absence of p53. Journal of Molecular Cell Biology, 11, 255-264.
https://doi.org/10.1093/jmcb/mjz012
[61]  Venkatesh, D., O’brien, N.A., Zandkarimi, F., et al. (2020) MDM2 and MDMX Promote Ferroptosis by PPARα-Mediated Lipid Remodeling. Genes & Development, 34, 526-543.
https://doi.org/10.1101/gad.334219.119
[62]  Zhang, X., Zheng, Q., Yue, X., et al. (2022) ZNF498 Promotes Hepatocellular Carcinogenesis by Suppressing p53-Mediated Apoptosis and Ferroptosis via the Attenuation of p53 Ser46 Phosphorylation. Journal of Experimental & Clinical Cancer Research, 41, Article No. 79.
https://doi.org/10.1186/s13046-022-02288-3

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133