|
基于CBAM注意力机制的YOLOv5目标检测算法在电力业务证件识别上的应用
|
Abstract:
针对在电力业务领域传统的人工方式进行证件识别存在的效率低、识别时间长和可靠性低等问题,提出了一种用于电力业务工作中证件识别的改进YOLOv5模型。引入CBAM (Convolutional Block At-tention Module)算法提高特征提取性能,解决在图像分辨率低、光线暗等场景下识别率低的问题。通过对改进前后算法模型性能的对比分析,验证了该方法的优越性。实验结果表明,与原有的YOLOv5检测算法相比,所提方法在检测速度上能够满足实际检测的需要,且检测精度更优,检测时间为0.056 s,检测平均准确度均值为95.40%,提高了9个百分点。
An improved YOLOv5 model for certificate recognition in the power industry is proposed to address the problems of low efficiency, long recognition time, and low reliability of traditional manual methods. The CBAM (Convolutional Block Attention Module) algorithm is introduced to enhance feature extraction performance and solve the problem of low recognition rate in scenarios with low image resolution and dark lighting. Through comparative analysis of the performance of the algorithm model before and after improvement, the superiority of this method is verified. The experimental results show that compared with the original YOLOv5 detection algorithm, the proposed method can meet the actual detection needs in terms of detection speed, and has better detection accuracy. The detection time is 0.056 seconds, and the mean average precision of detection is 95.40%, which is increased by 9 percent.
[1] | 陈驰, 彭向阳, 宋爽, 等. 大型无人机电力巡检LiDAR点云安全距离诊断方法[J]. 电网技术, 2017, 41(8): 2723-2730. |
[2] | 李振宇, 郭锐, 赖秋频, 等. 基于计算机视觉的架空输电线路机器人巡检技术综述[J]. 中国电力, 2018, 51(11): 139-146. |
[3] | 仝卫国, 李宝树, 苑津莎, 等. 图像处理技术在直升机巡检输电线路中的应用综述[J]. 电网技术, 2010, 34(12): 204-208. |
[4] | Li, Y., Zhang, W., Li, P., et al. (2021) A Method for Autonomous Nav-igation and Positioning of UAV Based on Electric Field Array Detection. Sensors, 21, Article No. 1146. https://doi.org/10.3390/s21041146 |
[5] | 郝帅, 杨磊, 马旭, 等. 基于注意力机制与跨尺度特征融合的YOLOv5输电线路故障检测[J]. 中国电机工程学报, 2023, 43(6): 2319-2330. |
[6] | Matikainen, L., Lethtomaki, M., Ahokas, E., et al. (2016) Remote Sensing Methods for Power Line Corridor Surveys. ISPRS Journal of Photogrammetry and Remote Sensing, 119, 10-31. https://doi.org/10.1016/j.isprsjprs.2016.04.011 |
[7] | Ma, Y., Li, Q., Chu, L., et al. (2021) Real-Time Detection and Spatial Localization of Insulators for UAV Inspection Based on Binocular Stereo Vi-sion. Remote Sensing, 13, 230-250. https://doi.org/10.3390/rs13020230 |
[8] | Hui, X.L., Jiang, B., Yu, Y.J., et al. (2017) A Novel Autonomous Navigation Approach for UAV Power Line Inspection. 2017 IEEE International Confer-ence on Robotics and Biomimetics (ROBIO), Macau, 5-8 December 2017, 634-639. https://doi.org/10.1109/ROBIO.2017.8324488 |
[9] | Nguyen, V.N., Jenssen, R. and Roverso, D. (2019) Intelligent Monitoring and Inspection of Power Line Components Powered by UAVs and Deep Learning. IEEE Power and Energy Technology Systems Journal, 6, 11-21.
https://doi.org/10.1109/JPETS.2018.2881429 |
[10] | Liu, X.Y., Miao, X.R., Jiang, H., et al. (2020) Data Analysis in Visual Power Line Inspection: An In-Depth Review of Deep Learning for Component Detection and Fault. Annual Re-views in Control, 50, 253-277.
https://doi.org/10.1016/j.arcontrol.2020.09.002 |
[11] | 吴雪, 宋晓茹, 高嵩, 等. 基于深度学习的目标检测算法综述[J]. 传感器与微系统, 2021, 40(2): 4-7+18. |
[12] | 翁智, 程曦, 郑志强. 基于改进YOLOv3的高压输电线路关键部件检测方法[J]. 计算机应用, 2020, 40(z2): 183-187. |
[13] | 金昊, 康宇哲, 齐希阳, 等. 基于Faster R-CNN的高压电线缺陷检测方法[J]. 计算机应用, 2019, 39(z2): 97-102. |
[14] | 王猛. 基于机器视觉的网络变压器模块缺陷检测系统研究[J]. 机床与液压, 2021, 49(4): 89-93. |
[15] | Woo, S., Park, J., Lee, J.Y. and Kweon, I.S. (2018) CBAM: Convolutional Block Attention Module. In: Ferrari, V., Hebert, M., Sminchisescu, C. and Weiss, Y., Eds., Computer Vi-sion—ECCV 2018, Springer, Cham, 3-19.
https://doi.org/10.1007/978-3-030-01234-2_1 |