全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

浅谈分子生物基因在原发性高血压中的作用
The Role of Molecular Biogenes in Essential Hypertension

DOI: 10.12677/ACM.2023.1371539, PP. 11036-11042

Keywords: 原发性高血压,分子生物标志物,基因多态性,循环微核糖核酸
Essential Hypertension
, Molecular Biomarkers, Genetic Polymorphism, Circulating Microribonucleic Acid

Full-Text   Cite this paper   Add to My Lib

Abstract:

原发性高血压是由遗传和环境等多方面影响的遗传相关的慢性非传染性疾病,随着它的高发病率被全世界高度关注。流行病学调查显示,原发性高血压患病人群已趋年轻化。高血压作为心血管疾病的首要危险因素及病因,具有较高发病率、致残率、致死率。因此,原发性高血压发病机制的研究就显得尤为重要,本文通过对原发性高血压分子生物基因方面的研究进展进行相关阐述,了解其在高血压疾病中的运用,更好进行早期发现、干预、诊疗,对降低原发性高血压发病率,减少心血管疾病发生有着重要意义。
Essential hypertension is a chronic non-infectious disease related to heredity, which is affected by heredity, environment and other aspects. With its high incidence rate, it has been highly concerned all over the world. Epidemiological surveys show that the population with primary hypertension is becoming younger. Hypertension, as the primary risk factor and cause of cardiovascular disease, has a high incidence rate, disability rate and mortality rate. Therefore, the research on the patho-genesis of essential hypertension is particularly important. This article describes the research pro-gress in molecular biological genes of essential hypertension, understands its application in hyper-tension, and better carries out early detection, intervention, diagnosis and treatment, which is of great significance to reduce the incidence rate of essential hypertension and reduce the incidence of cardiovascular diseases.

References

[1]  中国高血压防治指南2018年修订版[J]. 心脑血管病防治, 2019, 19(1): 1-44.
[2]  Wang, Z., Chen, Z., Zhang, L., et al. (2018) Status of Hypertension in China: Results from the China Hypertension Survey, 2012-2015. Circulation, 137, 2344-2356.
https://doi.org/10.1161/CIRCULATIONAHA.117.032380
[3]  荣海艳, 胡红娟. 中青年体检人群高血压前期流行现状及高风险因素分析[J]. 中国社区医师, 2022, 38(7): 146-148.
[4]  Whelton, P.K., Carey, R.M., Aronow, W.S., et al. (2018) 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/ NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension (Dallas, Tex.: 1979), 71, e13-e115.
https://doi.org/10.1161/HYP.0000000000000076
[5]  Henning, R.J. (2021) Cardio-vascular Exosomes and MicroRNAs in Cardiovascular Physiology and Pathophysiology. Journal of Cardiovascular Translational Research, 14, 195-212.
https://doi.org/10.1007/s12265-020-10040-5
[6]  ?akmak, H.A. and Demir, M. (2020) MicroRNA and Cardiovascular Diseases. Balkan Medical Journal, 37, 60-71.
https://doi.org/10.4274/balkanmedj.galenos.2020.2020.1.94
[7]  Sekar, D., Shilpa, B.R. and Das, A.J. (2017) Relevance of microRNA 21 in Different Types of Hypertension. Current Hypertension Reports, 19, Article No. 57.
https://doi.org/10.1007/s11906-017-0752-z
[8]  Li, X., Wei, Y. and Wang, Z. (2018) microRNA-21 and Hyper-tension. Hypertension Research: Official Journal of the Japanese Society of Hypertension, 41, 649-661.
https://doi.org/10.1038/s41440-018-0071-z
[9]  Watanabe, K., Narumi, T., Watanabe, T., et al. (2020) The Associ-ation between microRNA-21 and Hypertension-Induced Cardiac Remodeling. PLOS ONE, 15, e0226053.
https://doi.org/10.1371/journal.pone.0226053
[10]  Wang, Y., et al. (2022) The Relationship between Serum miR-21 Levels and Left Atrium Dilation in Elderly Patients with Essential Hypertension. Journal of Geriatric Cardiology: JGC, 19, 833-842.
[11]  Konukoglu, D. and Uzun, H. (2017) Endothelial Dysfunction and Hypertension. Advances in Experimental Medicine and Biology, 956, 511-540.
https://doi.org/10.1007/5584_2016_90
[12]  Shi, N., Mei, X. and Chen, S.Y. (2019) Smooth Muscle Cells in Vascular Remodeling. Arteriosclerosis, Thrombosis, and Vascular Bi-ology, 39, e247-e252.
https://doi.org/10.1161/ATVBAHA.119.312581
[13]  Shang, F., Guo, X., Chen, Y., et al. (2022) Endothelial MicroRNA-483-3p Is Hypertension-Protective. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 3698219.
https://doi.org/10.1155/2022/3698219
[14]  Chu, H.T., Li, L., Jia, M., et al. (2020) Correlation between Serum microRNA-136 Levels and RAAS Biochemical Markers in Patients with Essential Hypertension. Euro-pean Review for Medical and Pharmacological Sciences, 24, 11761-11767.
[15]  Huang, Y.Q., Huang, C., Zhang, B., et al. (2020) Association of Circulating miR-155 Expression Level and Inflammatory Markers with White Coat Hyperten-sion. Journal of Human Hypertension, 34, 397-403.
https://doi.org/10.1038/s41371-019-0250-7
[16]  Huang, Y.Q., Huang, C., Chen, J.Y., et al. (2016) The Associa-tion of Circulating miR-30a, miR-29 and miR-133 with White-Coat Hypertension. Biomarkers in Medicine, 10, 1231-1239.
https://doi.org/10.2217/bmm-2016-0215
[17]  Cengiz, M., Karatas, O.F., Koparir, E., et al. (2015) Dif-ferential Expression of Hypertension-Associated microRNAs in the Plasma of Patients with White Coat Hypertension. Medicine, 94, e693.
https://doi.org/10.1097/MD.0000000000000693
[18]  Matshazi, D.M., Weale, C.J., Erasmus, R.T., et al. (2021) Circulating Levels of MicroRNAs Associated with Hypertension: A Cross-Sectional Study in Male and Female South African Participants. Frontiers in Genetics, 12, Article ID: 710438.
https://doi.org/10.3389/fgene.2021.710438
[19]  Marques, F.Z. and Charchar, F.J. (2015) microRNAs in Essential Hypertension and Blood Pressure Regulation. Advances in Experimental Medicine and Biology, 888, 215-235.
https://doi.org/10.1007/978-3-319-22671-2_11
[20]  Golonka, R.M., Cooper, J.K., Issa, R., et al. (2021) Impact of Nutritional Epigenetics in Essential Hypertension: Targeting microRNAs in the Gut-Liver Axis. Current Hypertension Reports, 23, Article No. 28.
https://doi.org/10.1007/s11906-021-01142-9
[21]  Ouyang, Y., Wu, H., Tan, A., et al. (2015) E-selectin Gene Polymorphism (A561C) and Essential Hypertension. Meta-Analysis in the Chinese Population. Herz, 40, 197-202.
https://doi.org/10.1007/s00059-014-4122-1
[22]  Srivastava, K., Chandra, S., Narang, R., et al. (2018) E-selectin Gene in Essential Hypertension: A Case-Control Study. European Journal of Clinical Investigation, 48, e12868.
https://doi.org/10.1111/eci.12868
[23]  Burnett, J.C. (2006) Novel Therapeutic Directions for the Natriuretic Pep-tides in Cardiovascular Diseases: What’s on the Horizon. Journal of Cardiology, 48, 235-241.
[24]  Chen, Y.L., Daneva, Z., Kuppusamy, M., et al. (2022) Novel Smooth Muscle Ca2+-Signaling Nanodomains in Blood Pressure Regulation. Circulation, 146, 548-564.
https://doi.org/10.1161/CIRCULATIONAHA.121.058607
[25]  Kuang, D.B., Zhou, J.P., Li, M.P., et al. (2017) Association of NPR3 Polymorphism with Risk of Essential Hypertension in a Chinese Pop-ulation. Journal of Clinical Pharmacy and Therapeutics, 42, 554-560.
https://doi.org/10.1111/jcpt.12549
[26]  Liu, X., Jiang, C. and Yang, P. (2017) Association of Single Nucleotide Polymorphisms in the 5’ Upstream Region of the C4BPA Gene with Essential Hypertension in a Northeastern Han Chi-nese Population. Molecular Medicine Reports, 16, 1289-1297.
https://doi.org/10.3892/mmr.2017.6736
[27]  Mei, X.F., Hu, S.D., Liu, P.F., et al. (2020) ALDH2 Gene rs671 Polymorphism May Decrease the Risk of Essential Hyper-tension. International Heart Journal, 61, 562-570.
https://doi.org/10.1536/ihj.19-259
[28]  Sharma, S., Ruffenach, G., Umar, S., et al. (2016) Role of Oxidized Lipids in Pulmonary Arterial Hypertension. Pulmonary Circulation, 6, 261-273.
https://doi.org/10.1086/687293
[29]  O’brien, P.J., Siraki, A.G. and Shangari, N. (2005) Aldehyde Sources, Metabolism, Molecular Toxicity Mechanisms, and Possible Effects on Human Health. Critical Reviews in Tox-icology, 35, 609-662.
https://doi.org/10.1080/10408440591002183
[30]  Zhang, J., Guo, Y., Zhao, X., et al. (2023) The Role of Alde-hyde Dehydrogenase 2 in Cardiovascular Disease. Nature Reviews Cardiology, 20, 495-509.
https://doi.org/10.1038/s41569-023-00839-5
[31]  Wang, D., Zou, Y., Yu, S., et al. (2020) The Effect of ALDH2 rs671 Gene Mutation on Clustering of Cardiovascular Risk Factors in a Big Data Study of Chinese Population: Associa-tions Differ between the Sexes. BMC Cardiovascular Disorders, 20, Article No. 509.
https://doi.org/10.1186/s12872-020-01787-5
[32]  Wang, Y., Zhang, Y., Zhang, J., et al. (2013) Association of a Functional Single-Nucleotide Polymorphism in the ALDH2 Gene with Essential Hypertension Depends on Drinking Behavior in a Chinese Han Population. Journal of Human Hypertension, 27, 181-186.
https://doi.org/10.1038/jhh.2012.15
[33]  Ma, C., Yu, B., Zhang, W., et al. (2017) Associations between Aldehyde Dehydrogenase 2 (ALDH2) rs671 Genetic Polymorphisms, Lifestyles and Hypertension Risk in Chinese Han People. Scientific Reports, 7, Article No. 11136.
https://doi.org/10.1038/s41598-017-11071-w
[34]  Zheng, Y., Ning, C., Zhang, X., et al. (2020) Association be-tween ALDH-2 rs671 and Essential Hypertension Risk or Blood Pressure Levels: A Systematic Review and Me-ta-Analysis. Frontiers in Genetics, 11, Article No. 685.
https://doi.org/10.3389/fgene.2020.00685
[35]  Benjafield, A.V., Jeyasingam, C.L., Nyholt, D.R., et al. (1998) G-Protein beta3 Subunit Gene (GNB3) Variant in Causation of Essential Hypertension. Hypertension (Dallas, Tex.: 1979), 32, 1094-1097.
https://doi.org/10.1161/01.HYP.32.6.1094
[36]  Siffert, W. (2003) G-Protein beta3 Subunit 825T Allele and Hy-pertension. Current Hypertension Reports, 5, 47-53.
https://doi.org/10.1007/s11906-003-0010-4
[37]  Zheng, H., Xu, H., Cui, B., et al. (2013) Association between Polymorphism of the G-Protein β3 Subunit C825T and Essential Hypertension: An Updated Meta-Analysis Involving 36,802 Subjects. Biological Research, 46, 265-273.
https://doi.org/10.4067/S0716-97602013000300007
[38]  Gbadoe, K.M., Berdouzi, N., Agui?ano, A.A.A., et al. (2016) Cardiovascular Diseases-Related GNB3 C825T Polymorphism Has a Significant Sex-Specific Effect on Serum Soluble E-selectin Levels. Journal of Inflammation (London, England), 13, Article No. 39.
https://doi.org/10.1186/s12950-016-0146-z
[39]  Bagos, P.G., Elefsinioti, A.L., Nikolopoulos, G.K., et al. (2007) The GNB3 C825T Polymorphism and Essential Hypertension: A Meta-Analysis of 34 Studies Including 14,094 Cases and 17,760 Controls. Journal of Hypertension, 25, 487-500.
https://doi.org/10.1097/HJH.0b013e328011db24
[40]  付凌雨, 金辉, 时玥, 等. 中国汉族原发性高血压患者G蛋白β3亚单位825C/T多态性Meta分析[J]. 中国全科医学, 2008(16): 1439-1441.
[41]  宋洁, 鲁双, 高晓红, 等. 牡丹江地区汉族及朝鲜族高血压人群中G蛋白β3亚单位825C/T的多态性[J]. 中国组织工程研究与临床康复, 2011, 15(50): 9491-9495.
[42]  李小溪, 阿衣古丽?玉努斯, 黄静静, 等. G蛋白β3亚单位基因C825T多态性与高血压维医分型的关系[J]. 中国中西医结合杂志, 2014, 34(3): 297-302.
[43]  Backes, C., Sedaghat-Hamedani, F., Frese, K., et al. (2016) Bias in High-Throughput Analysis of miRNAs and Implications for Biomarker Studies. Analytical Chemistry, 88, 2088-2095.
https://doi.org/10.1021/acs.analchem.5b03376
[44]  Hofmann, S., Huang, Y., Paulicka, P., et al. (2015) Dou-ble-Stranded Ligation Assay for the Rapid Multiplex Quantification of MicroRNAs. Analytical Chemistry, 87, 12104-12111.
https://doi.org/10.1021/acs.analchem.5b02850
[45]  Liu, Q., Shin, Y., Kee, J.S., et al. (2016) Corri-gendum to “Mach-Zehnder Interferometer (MZI) Point-of-Care System for Rapid Multiplexed Detection of microRNAs in Human Urine Specimens” [Biosens. Bioelectron. 71 (2015) 365-372]. Biosensors & Bioelectronics, 85, 996.
https://doi.org/10.1016/j.bios.2016.05.011

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133