全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Production of an Eco-Cement by Clinker Substitution by the Mixture of Calcined Clay and Limestone, Songololo (DR Congo)

DOI: 10.4236/gep.2023.117005, PP. 67-80

Keywords: Clay, Calcined Clay, Limestone, Cement, Eco-Cement, Songololo

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ordinary Portland Cement (OPC) is by mass the largest manufactured product on Earth, responsible for approximately 6% - 8% of global anthropogenic carbon dioxide emissions (CO2) and 35% of industrial CO2 emissions. On average 0.8 to 0.9 ton of CO2 is emitted to produce one ton of OPC. In this paper, partial substitution of clinker (30% - 35%) by the calcined clay-limestone mixture was investigated in order to produce an eco-cement (LC3). Analyzes by XRF, XRD and ATG/ATD have characterized different components, determined the calcination temperature and selected the right clay which can act as effective Supplementary Cementitious Material (SCM). Mechanical tests on mortar carried out over a period of 90 days. The WBCSD/WRI Greenhouse Gas Protocol methodology then allowed the calculation of CO2 emissions into the atmosphere. Three types of clay are available in the Songololo Region. The kaolinite is the principal clay mineral and its content varies from 27% to 34%. The sum of kaolinite and amorphous phase which enable clay to react with cementitious material ranges from 57% to 60%. The SiO2 content ranges from 33% to 76%, the Alumina content from 12% to 20% so that the ratio Al2O3/SiO2 is on the higher side (0.17 - 0.53). The calcination window is between 750°C and 850°C and the best clay which can act as SCM identified. The clinker’s substitution reduced CO2 emissions from 0.824 ton of CO2 for one ton of OPC to 0.640 ton of CO2 for one ton of LC3, means 22% less emissions. The compressive strengths developed by LC3 vary from 8.91 to 57.6 MPa (Day 1 to Day 90), exceed those of references 32.5 cement and are close to 42.5 cement. In view of the results, LC3 cement can be considered for industrial trials.

References

[1]  Antoni, M., Rossen, J., Martirena, F., & Scrivener, K. (2012). Cement Substitution by a Combination of Metakaolin and Limestone. Cement and Concrete Research, 42, 1579-1589.
https://doi.org/10.1016/j.cemconres.2012.09.006
[2]  Aparicio, P., & Galan, E. (1999). Mineralogical Interference on Kaolinite Crystallinity Index Measurements. Clay Minerals, 47, 12-27.
https://doi.org/10.1346/CCMN.1999.0470102
[3]  Baudet, D. M., Fernandez-Alonso, F., Kabalu, K., Tack, L., Theunissen, K., Dewaele, S., Eekelers, K., Kadja, G., Mujinga, E., Nseka, P., Phambu, J., Kitambala, N., Kongota, E., Matungila, J., Muanza, M., & Tshibwabwa, A. M. (2013). Notice explicative de la carte géologique de la Province du Bas-Congo et Carte géologique à l’échelle du 1/500.000, Version 1.0, MRAC-CRGM, Inédit.
[4]  Bergaya, F., Theng, B. K. G., & Lagaly, G. (2006). Handbook of Clay Science (1224 p.). Elsevier.
[5]  Bich, C. (2005). Contribution à l’étude de l’activation thermique du kaolin: Evolution de la structure cristallographique et activité pouzzolanique (178 p.). Thèse Doctorat, Institut National des Sciences Appliqués de Lyon, France.
[6]  British Standards EN 196-1 (2005). Methods of Testing Cement—Part 1: Determination of Strength.
[7]  British Standards EN 196-3:2005 + A1 (2008). Methods of Testing Cement, Part 3— Determination of Setting Times and Soundness.
[8]  British Standards EN 196-6 (2010). Methods of Testing Cement, Part 6—Determination of Fineness.
[9]  British Standards EN 197-1 (2000). Cement, Part 1: Composition, Specifications and Conformity Criteria for Common Cements.
[10]  Cancio Díaz, Y. (2017). Limestone Calcined Clay Cement as a Low-Carbon Solution to Meet Expanding Cement Demand in Emerging Economies. Development Engineering, 2, 82-91.
https://doi.org/10.1016/j.deveng.2017.06.001
[11]  Cembureau (2017). World Statistical Review 2004-2014. Cembureau.
[12]  Duchesne, J., & Bérubé, M. (1994). The Effectiveness of Supplementary Cementing Materials in Suppressing Expansion Due to ASR: Another Look at the Reaction Mechanisms; Part 1: Concrete Expansion and Portlandite Depletion. Cement and Concrete Research, 24, 73-82.
https://doi.org/10.1016/0008-8846(94)90084-1
[13]  Frimmel, H. E. (2009). Trace Element Distribution in Neoproterozoic Carbonates as Palaeoenvironmental Indicator. Chemical Geology, 258, 338-353.
https://doi.org/10.1016/j.chemgeo.2008.10.033
[14]  Frost, R. L., Cheng, H., Yang, J., Liu, Q., & He, J. (2010). Thermogravimetric Analysis Mass Spectrometry (TG-MS) of Selected Chinese Kaolinites. Thermochimica Acta, 507-508, 106-114.
https://doi.org/10.1016/j.tca.2010.05.007
[15]  Gartner, E. M. (2004). Industrially Interesting Approaches to “Low-CO2” Cements. Cement and Concrete Research, 34, 1489-1498.
https://doi.org/10.1016/j.cemconres.2004.01.021
[16]  Gasparini, E., Tarantino, S. C., Ghigna, P., Riccardi, M. P., Cedillo-González, E. I., Siligardi, C., & Zema, M. (2013). Thermal Dehydroxylation of Kaolinite under Isothermal Conditions. Applied Clay Science, 80-81, 417-425.
https://doi.org/10.1016/j.clay.2013.07.017
[17]  Gobbo, L. A. (2009). Application of X-Ray Diffraction and Rietveld Method in the Study of Portland Cement. Apl. Da Difração Raios X e Método Rietveld No Estud. Do Cim. Portland. (In Portuguese)
[18]  IEA, WBCSD (2009). Cement Technology Roadmap 2009 Carbon Emissions Reductions up to 2050. OECD/IEA; WBCSD.
http://wbcsdcement.org/pdf/technology/WBCSD-IEA_Cement%20Roadmap.pdf
[19]  Marangu, J. M. (2020). Physico-Chemical Properties of Kenyan Made Calcined Clay— Limestone Cement (LC3). Case Studies in Construction Materials, 12, e00333.
https://doi.org/10.1016/j.cscm.2020.e00333
[20]  Reddy, S. S., & Reddy, M. A. K. (2021). Lime Calcined Clay Cement (LC3): A Review. IOP Conference Series: Earth and Environmental Science, 796, Article ID: 012037.
https://doi.org/10.1088/1755-1315/796/1/012037
[21]  Scrivener, K. L. (1984). The Development of Microstructure during the Hydration of Portland Cement (215 p.). Thèse de Doctorat, Imperial College of Science and Technology London.
[22]  Scrivener, K. L., John, V. M., & Gartner, E. M. (2016). Eco-Efficient Cements: Potential, Economically Viable Solutions for a Low-CO2 Cement-Based Materials Industry (56 p.). UNEP.
[23]  Scrivener, K., & Favier, A. (2015). Calcined Clays for Sustainable Concrete (pp. 323-329). RILEM Book Series.
https://doi.org/10.1007/978-94-017-9939-3
[24]  Scrivener, K., Martirena, K., Bishnoi, S., & Maity, S. (2018). Limestone Calcined Clay Limestone Cements (LC3). Cement and Concrete Research, 114, 49-56.
https://doi.org/10.1016/j.cemconres.2017.08.017
[25]  Tironi, A., Trezza, M. A., Scian, A. N., & Irassar, E. F. (2014). Thermal Analysis to Assess Pozzolanic Activity of Calcined Kaolinitic Clays. Journal of Thermal Analysis and Calorimetry, 117, 547-556.
https://doi.org/10.1007/s10973-014-3816-1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133