全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Real Origin of Climate Change and the Feasibilities of Its Mitigation

DOI: 10.4236/acs.2023.133020, PP. 353-384

Keywords: IR-Absorption of Gases, Thermal Radiation of Gases, Solar Absorption Coefficient of Coloured Bodies, Albedo, Temperature Measurements

Full-Text   Cite this paper   Add to My Lib

Abstract:

The actual treatise represents a synopsis of six important previous contributions of the author, concerning atmospheric physics and climate change. Since this issue is influenced by politics like no other, and since the greenhouse-doctrine with CO2 as the culprit in climate change is predominant, the respective theory has to be outlined, revealing its flaws and inconsistencies. But beyond that, the author’s own contributions are focused and deeply discussed. The most eminent one concerns the discovery of the absorption of thermal radiation by gases, leading to warming-up, and implying a thermal radiation of gases which depends on their pressure. This delivers the final evidence that trace gases such as CO2 don’t have any influence on the behaviour of the atmosphere, and thus on climate. But the most useful contribution concerns the method which enables to determine the solar absorption coefficient βs of coloured opaque plates. It delivers the foundations for modifying materials with respect to their capability of climate mitigation. Thereby, the main influence is due to the colouring, in particular of roofs which should be painted, preferably light-brown (not white, from aesthetic reasons). It must be clear that such a drive for brightening-up the World would be the only chance of mitigating the climate, whereas the greenhouse doctrine, related to CO2, has to be abandoned. However, a global climate model with forecasts cannot be aspired to since this problem is too complex, and since several climate zones exist.

References

[1]  Plass, G.N. (1956) Carbon Dioxide and the Climate. American Scientist, 44, 302-316.
https://www.jstor.org/stable/27826805
[2]  Arrhenius, S. (1896) On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground. Philosophical Magazine, 41, 238-276.
https://doi.org/10.1080/14786449608620846
[3]  Tyndall, J. (1863) On the Radiation through the Earth’s Atmosphere. Philosophical Magazine, 25, 200-205.
https://doi.org/10.1080/14786446308643443
[4]  Revelle, R. (1982) Carbon Dioxide and World Climate. Scientific American, 247, 33-41.
https://doi.org/10.1038/scientificamerican0882-35
[5]  Hansen, J., Johnson, D., Lacis, A., Lebedeff, S., Lee, P., Rind, D. and Russel, G. (1981) Climate Impact of Increasing Atmospheric Carbon Dioxide. Science, 213, 957-966.
https://doi.org/10.1126/science.213.4511.957
[6]  Ramanathan, V., Callis, L., Cess, R., Hanssen, J., Isaksen, I., Kuhn, W. (1987) Climate-Chemical Interactions and Effects of Changing Atmospheric Trace Gases. Reviews of Geophysics, 25, 1441-1482.
https://doi.org/10.1029/RG025i007p01441
[7]  Hartmann, D.L. (1994) Global Physical Climatology. Academic Press, Cambridge.
[8]  Visconti, G. (2001) Fundamentals of Physics and Chemistry of the Atmosphere. Springer, Berlin.
https://doi.org/10.1007/978-3-662-04540-4
[9]  Boeker, E. and von Grondelle, R. (2011) Environmental Physics. Wiley, Hoboken.
https://doi.org/10.1002/9781119974178
[10]  Joseph, J.H., Wiscombe, W.J. and Weinman, J.A. (1976) The Delta-Eddington Approximation for Radiative Flux Transfer. Journal of the Atmospheric Sciences, 33, 2452-2459.
https://doi.org/10.1175/1520-0469(1976)033<2452:TDEAFR>2.0.CO;2
[11]  Yang, W.-J., et al. (1995) Radiative Heat Transfer by the Monte Carlo Method. Advances in Heat Transfer, 27.
[12]  Seim, T.O. and Olsen, B.T. (2020) Unexpected Relationships between Thermal and Radiative Energy Transfer. Atmospheric and Climate Sciences, 10, 639-651.
https://www.scirp.org/journal/paperinformation.aspx?paperid=103816
https://doi.org/10.4236/acs.2020.104033
[13]  Tyndall, J. (1861) On the Absorption and Radiation of Heat by Gases and Vapours and on the Physical Connection of Radiation, Absorption and Conduction. Philosophical Magazine, 22, 273-285.
https://doi.org/10.1080/14786446108643154
[14]  Plass, G.N. (1956) The Influence of the 15 μ Carbon-Dioxide Band on the Atmospheric Infra-Red Cooling Rate. Quarterly Journal of the Royal Meteorological Society, 82, 310-324.
https://doi.org/10.1002/qj.49708235307
[15]  Allmendinger, T. (2017) The Refutation of the Climate Greenhouse Greenhouse Theory and a Proposal for a Hopeful Alternative. Environment Pollution and Climate Change, 1, Article No. 123.
https://doi.org/10.4172/2573-458X.1000123
https://www.omicsonline.org/open-access/the-refutation-of-the-climate-greenhouse-theory-and-a-proposal-for-ahopeful-alternative.php?aid=88698
[16]  Lindgren, M. (2021) Anthropogenic Heat Flux Will Affect Global Warming. Atmospheric and Climate Sciences, 11, 563-568.
https://www.scirp.org/journal/paperinformation.aspx?paperid=110425
https://doi.org/10.4236/acs.2021.113034
[17]  Stefan, J. (1879) über die Beziehung zwischen der Wärmestrahlung und der Temperatur. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien, Vol. 79, Aus der k.k. Hof-und Staatsdruckerei, 391-428.
[18]  Dulong, M.M. and Petit (1817) Des Recherches sur la Mesure des Températures et sur les Lois de la communication de la chaleur. Annales de Chimie et de Physique, 2, 337-367.
[19]  Boltzmann, L. (1884) Ableitung des Stefan’schen Gesetzes, betreffend die Abhängigkeit der Wärmestrahlung von der Temperatur aus der electromagnetischen Lichttheorie. Annalen der Physik und Chemie, 22, 291-294.
https://doi.org/10.1002/andp.18842580616
[20]  Allmendinger, T. (2016) The Solar-Reflective Characterization of Solid Opaque Materials. International Journal of Science and Technology Educational Research, 7, 1-17.
https://doi.org/10.5897/IJSTER2015.0341
http://www.academicjournals.org/journal/IJSTER/article-full-text-pdf/E7435F759158
[21]  Allmendinger, T. (2016) The Thermal Behaviour of Gases under the Influence of Infrared-Radiation. International Journal of Physical Sciences, 11, 183-206.
https://doi.org/10.5897/IJPS2016.4500
http://www.academicjournals.org/journal/IJPS/article-full-text-pdf/E00ABBF60017
[22]  Allmendinger, T. (2022) A Spherical Atom Model of Helium Based on Well-Defined Electron Trajectories. Journal of Applied Mathematics and Physics, 10, 1998-2014.
https://doi.org/10.4236/jamp.2022.106136
https://www.scirp.org/journal/paperinformation.aspx?paperid=118162
[23]  Seim, T.O. and Olsen, B.T. (2020) The Influence of IR Absorption and Backscatter Radiation form CO2 on Air Temperature during Heating in a Simulated Earth/Atmosphere Experiment. Atmospheric and Climate Sciences, 10, 168-185.
https://doi.org/10.4236/acs.2020.102009
https://www.scirp.org/journal/paperinformation.aspx?paperid=99608
[24]  Allmendinger, T. (2018) The Thermal Radiation of the Atmosphere and Its Role in the So-Called Greenhouse Theory. Atmospheric and Climate Sciences, 8, 212-234.
http://file.scirp.org/Html/6-4700674_84015.htm
https://doi.org/10.4236/acs.2018.82014
[25]  Hoag, H. (2015) How Cities Can Beat the Heat. Nature, 524, 402-404.
http://www.nature.com/news/how-cities-can-beat-the-heat-1.18228
https://doi.org/10.1038/524402a
[26]  Howard, L. (1833) The Climate of London, Vols. I-III. W. Phillips, London.
[27]  Mitchell Jr., J.M. (1961) The Temperature of Cities. Weatherwise, 14, 224-258.
https://doi.org/10.1080/00431672.1961.9930028
[28]  Mills, G. (1997) The Radiative Effects of Building Groups on Single Structures. Energy and Buildings, 25, 51-61.
https://doi.org/10.1016/S0378-7788(96)00989-9
[29]  Grimmond, C.S.B. and Oke, T.R. (1999) Turbulent Heat Fluxes in Urban Areas: Observations and Evaluation of a Simple Model. Journal of Applied Meteorology, 41, 792-810.
https://doi.org/10.1175/1520-0450(2002)041<0792:THFIUA>2.0.CO;2
[30]  Masson, V. (2000) A Physically-Based Scheme for the Urban Energy Budget in Atmosphere Models. Boundary-Layer Meteorology, 94, 357-397.
https://doi.org/10.1023/A:1002463829265
[31]  Kusaka, H., Kondo, H., Kikegawa, Y. and Kimura, F. (2001) A Simple Single-Layer Urban Canopy Model for Atmospheric Models: Comparison with Multi-Lay and Slab Models. Boundary-Layer Meteorology, 101, 329-358.
https://doi.org/10.1023/A:1019207923078
[32]  Erell, E. and Williamson, T. (2006) Simulating Air Temperature in an Urban Street Canyon in All Weather Conditions Using Measured Data at a Reference Meteorological Station. International Journal of Climatology, 26, 1671-1694.
https://doi.org/10.1002/joc.1328
[33]  Erell, E. (2008) The Application of Urban Climate Research in the Design of Cities. Advances in Building Energy Research, 2, 95-121.
https://doi.org/10.3763/aber.2008.0204
[34]  Pomerantz, M. and Akbari, H. (1998) Cooler Paving Materials for Heat-Island Mitigation. Proceedings of the 1998 ACEEE Summer Study on Energy Efficiency in Buildings, Vol. 9, 135-146.
[35]  Pomerantz, M., Akbari, H., Berdahl, P., Konopacki, S.J., Taha, H. and Rosenfeld, H. (1999) Reflective Surfaces for Cooler Buildings and Cities. Philosophical Magazine Part B, 79, 1457-1476.
https://doi.org/10.1080/13642819908216984
[36]  Akbari, H., Menon, S. and Rosenfeld, A. (2009) Global Cooling: Increasing World Wide Urban Albedos to Offset CO2. Climate Change, 94, 275-286.
https://link.springer.com/article/10.1007/s10584-008-9515-9
https://doi.org/10.1007/s10584-008-9515-9
[37]  Doulos, L., Santamouris, M. and Livada, I. (2004) Passive Cooling of Outdoor Urban Spaces. The Role of Materials. Solar Energy, 77, 231-249.
https://doi.org/10.1016/j.solener.2004.04.005
[38]  Synnefa, A., Santamouris, M. and Livada, I. (2006) A Study of the Thermal Performance of Reflective Coatings for the Urban Environment. Solar Energy, 80, 968-981.
https://doi.org/10.1016/j.solener.2005.08.005
[39]  Synnefa, A., Santamouris, M. and Apostolakis, K. (2007) On the Development, Optical Properties and Thermal Performance of Cool Colored Coatings for the Urban Environment. Solar Energy, 81, 488-497.
https://doi.org/10.1016/j.solener.2006.08.005
[40]  Homepage of the Berkeley Lab, Heat Island Group.
https://heatisland.lbl.gov/coolscience/cool-roofs
[41]  Homepage of the Cool Roof Rating Council.
https://coolroofs.org
[42]  Homepage of the European Cool Roofs Council (ECRC).
https://coolroofcouncil.eu/#section0
[43]  Akbari, H., Matthews, H.D. and Seto, D. (2012) The Long-Term Effect of Increasing the Albedo of Urban Areas. Environmental Research Letters, 7, Article ID: 024004.
https://doi.org/10.1088/1748-9326/7/2/024004
[44]  Allmendinger, T. (2017) Measures at Buildings for Mitigating the Microclimate. Environmental Pollution and Climate Change, 1, Article No. 128.
https://www.omicsonline.org/open-access/measures-at-buildings-for-mitigating-the-microclimate-2573-458X-1000128.php?aid=90625
https://doi.org/10.4172/2573-458X.1000128
[45]  Shultz, D. (2017) Los Angeles Paints Streets White to Stay Cool: Reflective Coating Won’t Make City Freeze over, But It’s a Start.
https://www.science.org/content/article/los-angeles-paints-streets-white-stay-cool

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133