全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

新生儿脑血管自主调节功能
Cerebral Autoregulation in Neonates

DOI: 10.12677/ACM.2023.1371520, PP. 10886-10892

Keywords: 脑血管自主调节功能,新生儿,早产儿,新生儿缺氧缺血性脑病,多巴胺,动脉导管未闭,手术, 体外膜肺
Cerebral Vascular Autoregulation
, Neonates, Premature Infants, Neonatal Hypoxic Ischemic Encephalopathy, Dopamine, Patent Ductus Arteriosus, Surgery, Extracorporeal Membrane Oxygenation

Full-Text   Cite this paper   Add to My Lib

Abstract:

维持脑血流在脑灌注压变化时保持稳定的机制被称为脑血管自主调节功能,它通过脑血管的血管反应(即血管平滑肌的收缩和舒张)实现。脑血管自主调节功能有赖于成熟的心血管系统及平稳的内环境,而新生儿群体较大婴儿在各方面发育尚不完善,在多种疾病的侵袭下容易出现脑血管自主调节功能受损,进而影响神经系统发育。早期监测患病新生儿的脑血管自主调节功能,识别并干预可对其造成损伤的危险因素,或可改善患儿神经预后。本文就脑血管自主调节功能的监测方法和新生儿在常见疾病状态下脑血管自主调节功能的改变进行综述,旨在探讨脑血管自主调节功能的监测在新生儿疾病诊疗过程中的应用价值及前景,为其进一步的临床研究提供依据。
The mechanism of maintaining stable cerebral blood flow during changes in cerebral perfusion pressure is called cerebral vascular autoregulation, which is achieved through the vascular re-sponse of cerebral blood vessels (the contraction and relaxation of vascular smooth muscles). The autonomous regulation function of cerebral blood vessels depends on a mature cardiovascular sys-tem and a stable internal environment. However, the development of the neonatal population is still incomplete in various aspects compared to older infants, which is prone to damage to the autono-mous regulation function of cerebral blood vessels under the invasion of various diseases, thereby affecting the development of the nervous system. Early monitoring of cerebrovascular autonomic regulation function of sick newborns, identification and intervention of risk factors that can cause damage to them may improve the neurological prognosis of children. This article reviews the moni-toring methods of cerebral vascular autoregulation function and the changes in cerebral vascular autoregulation function in newborns under common disease conditions, aiming to explore the ap-plication value and prospects of monitoring cerebral vascular autoregulation function in the diag-nosis and treatment of neonatal diseases, and provide a basis for further clinical research.

References

[1]  Rhee, C.J., et al. (2018) Neonatal Cerebrovascular Autoregulation. Pediatric Research, 84, 602-610.
https://doi.org/10.1038/s41390-018-0141-6
[2]  Liu, X., et al. (2021) Wavelet Autoregulation Monitoring Identi-fies Blood Pressures Associated with Brain Injury in Neonatal Hypoxic-Ischemic Encephalopathy. Frontiers in Neurol-ogy, 28, Article 662839.
https://doi.org/10.3389/fneur.2021.662839
[3]  Rhee, C.J., et al. (2014) The Ontogeny of Cerebrovascular Pres-sure Autoregulation in Premature Infants. Journal of Perinatology, 34, 926-931.
https://doi.org/10.1038/jp.2014.122
[4]  J?bsis, F.F. (1977) Noninvasive, Infrared Monitoring of Cerebral and Myocardial Oxygen Sufficiency and Circulatory Parameters. Science, 198, 1264-1267.
https://doi.org/10.1126/science.929199
[5]  Scholkmann, F., et al. (2014) A Review on Continuous Wave Func-tional Near-Infrared Spectroscopy and Imaging Instrumentation and Methodology. Neuroimage, 85, 6-27.
https://doi.org/10.1016/j.neuroimage.2013.05.004
[6]  Kooi, E.M.W., et al. (2017) Measuring Cerebrovascular Autoregulation in Preterm Infants Using Near-Infrared Spectroscopy: An Overview of the Literature. Expert Review of Neurotherapeutics, 17, 801-818.
https://doi.org/10.1080/14737175.2017.1346472
[7]  Lee, J.K., et al. (2017) Optimizing Cerebral Autoregulation May Decrease Neonatal Regional Hypoxic-Ischemic Brain Injury. Developmental Neuroscience, 39, 248-256.
https://doi.org/10.1159/000452833
[8]  Costa, F.G., Hakimi, N. and Van Bel, F. (2021) Neuroprotection of the Perinatal Brain by Early Information of Cerebral Oxygenation and Perfusion Patterns. International Journal of Molecular Sciences, 22, Article 5389.
https://doi.org/10.3390/ijms22105389
[9]  Drife, J. and Künzel, W. (2009) Editors’ Highlights. European Journal of Obstetrics & Gynecology and Reproductive Biology, 142, 1-2.
https://doi.org/10.1016/j.ejogrb.2008.11.001
[10]  Hoffman, S.B., Cheng, Y.J., Magder, L.S., Shet, N. and Viscardi, R.M. (2019) Cerebral Autoregulation in Premature Infants during the First 96 Hours of Life and Relationship to Adverse Outcomes. Archives of Disease in Childhood Fetal and Neonatal Edition, 104, F473-F479.
https://doi.org/10.1136/archdischild-2018-315725
[11]  Cimatti, A.G., et al. (2020) Cerebral Oxygenation and Au-toregulation in Very Preterm Infants Developing IVH during the Transitional Period: A Pilot Study. Frontiers in Pediat-rics, 8, Article 381.
https://doi.org/10.3389/fped.2020.00381
[12]  Thewissen, L., et al. (2021) Cerebral Oxygen Saturation and Autoregulation during Hypotension in Extremely Preterm Infants. Pediatric Research, 90, 373-380.
https://doi.org/10.1038/s41390-021-01483-w
[13]  Vesoulis, Z.A., Liao, S.M. and Mathur, A.M. (2017) Gestation-al Age-Dependent Relationship between Cerebral Oxygen Extraction and Blood Pressure. Pediatric Research, 82, 934-939.
https://doi.org/10.1038/pr.2017.196
[14]  Costa, C.S.D., Czosnyka, M., Smielewski, P. and Austin, T. (2018) Optimal Mean Arterial Blood Pressure in Extremely Preterm Infants within the First 24 Hours of Life. The Jour-nal of Pediatrics, 203, 242-248.
https://doi.org/10.1016/j.jpeds.2018.07.096
[15]  Wassink, G., et al. (2019) Therapeutic Hypothermia in Neonatal Hypoxic-Ischemic Encephalopathy. Current Neurology and Neuroscience Reports, 19, Article No. 2.
https://doi.org/10.1007/s11910-019-0916-0
[16]  Massaro, A.N., et al. (2015) Impaired Cerebral Autoregulation and Brain Injury in Newborns with Hypoxic-Ischemic Encephalopathy Treated with Hypothermia. Journal of Neuro-physiology, 114, 818-824.
https://doi.org/10.1152/jn.00353.2015
[17]  Burton, V.J., et al. (2015) A Pilot Cohort Study of Cerebral Autoregu-lation and 2-Year Neurodevelopmental Outcomes in Neonates with Hypoxic-Ischemic Encephalopathy Who Received Therapeutic Hypothermia. BMC Neurology, 15, Article No. 209.
https://doi.org/10.1186/s12883-015-0464-4
[18]  Carrasco, M., et al. (2018) Cerebral Autoregulation and Conven-tional and Diffusion Tensor Imaging Magnetic Resonance Imaging in Neonatal Hypoxic-Ischemic Encephalopathy. Pedi-atric Neurology, 82, 36-43.
https://doi.org/10.1016/j.pediatrneurol.2018.02.004
[19]  Eriksen, V.R., Hahn, G.H. and Greisen, G. (2014) Dopa-mine Therapy Is Associated with Impaired Cerebral Autoregulation in Preterm Infants. Acta Paediatrica, 103, 1221-1226.
https://doi.org/10.1111/apa.12817
[20]  Solanki, N.S. and Hoffman, S.B. (2020) Association between Dopamine and Cerebral Autoregulation in Preterm Neonates. Pediatric Research, 88, 618-622.
https://doi.org/10.1038/s41390-020-0790-0
[21]  Eriksen, V.R., Rasmussen, M.B., Hahn, G.H. and Greisen, G. (2017) Dopamine Therapy Does Not Affect Cerebral Autoregulation during Hypotension in Newborn Piglets. PLOS ONE, 12, e0170738.
https://doi.org/10.1371/journal.pone.0170738
[22]  Navikiene, J., Virsilas, E., Vankeviciene, R., Liubsys, A. and Jankauskiene, A. (2021) Brain and Renal Oxygenation Measured by NIRS Related to Patent Ductus Arteriosus in Pre-term Infants: A Prospective Observational Study. BMC Pediatrics, 21, Article No. 559.
https://doi.org/10.1186/s12887-021-03036-w
[23]  Chock, V.Y., Ramamoorthy, C. and Van Meurs, K.P. (2012) Cerebral Autoregulation in Neonates with a Hemodynamically Significant Patent Ductus Arteriosus. The Journal of Pe-diatrics, 160, 936-942.
https://doi.org/10.1016/j.jpeds.2011.11.054
[24]  Michel-Macías, C., Morales-Barquet, D.A., Martínez-García, A. and Ibarra-Ríos, D. (2020) Findings from Somatic and Cerebral Near-Infrared Spectroscopy and Echocardiographic Monitoring during Ductus Arteriosus Ligation: Description of Two Cases and Review of Literature Ductus Arteriosus and the Preterm Brain. Frontiers in Pediatrics, 8, Article 523.
https://doi.org/10.3389/fped.2020.00523
[25]  Smith, B., et al. (2017) Does Hypothermia Impair Cerebrovascular Autoregulation in Neonates during Cardiopulmonare Bypass? Pediatric Anesthesia, 27, 905-910.
https://doi.org/10.1111/pan.13194
[26]  Kuik, S.J., et al. (2018) Preterm Infants Undergoing Laparotomy for Necrotizing Enterocolitis Orspontaneous Intestinal Perforation Display Evidence of Impaired Cerebrovascular Autoregulation. Early Human Development, 118, 25-31.
https://doi.org/10.1016/j.earlhumdev.2018.01.019
[27]  Schat, T.E., et al. (2016) Assessing Cerebrovascular Auto-regulation in Infants with Necrotizing Enterocolitis Using Near-Infrared Spectroscopy. Pediatric Research, 79, 76-80.
https://doi.org/10.1038/pr.2015.184
[28]  Biouss, G., et al. (2019) Experimental Necrotizing Enterocolitis Induces Neuroinflammation in the Neonatal Brain. Journal of Neuroinflammation, 16, Article No. 97.
https://doi.org/10.1186/s12974-019-1481-9
[29]  Zamora, C.A., et al. (2016) Resistive Index Variability in Anterior Cerebral Artery Measurements during Daily Transcranial Duplex Sonography: A Predictor of Cerebrovascular Compli-cations in Infants Undergoing Extracorporeal Membrane Oxygenation? Journal of Ultrasound in Medicine, 35, 2459-2465.
https://doi.org/10.7863/ultra.15.09046
[30]  Tsou, P.Y., Garcia, A.V., Yiu, A., Vaidya, D.M. and Bembea, M.M. (2020) Association of Cerebral Oximetry with Outcomes after Extracorporeal Membrane Oxygenation. Neurocritical Care, 33, 429-437.
https://doi.org/10.1007/s12028-019-00892-4
[31]  Clair, M., et al. (2017) Prognostic Value of Cerebral Tissue Ox-ygen Saturation during Neonatal Extracorporeal Membrane Oxygenation. PLOS ONE, 12, e0172991.
https://doi.org/10.1371/journal.pone.0172991
[32]  Joram, N., et al. (2021) Continuous Monitoring of Cerebral Autoregulation in Children Supported by Extracorporeal Membrane Oxygenation: A Pilot Study. Neurocritical Care, 34, 935-945.
https://doi.org/10.1007/s12028-020-01111-1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133