全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

脑机接口技术联合重复经颅磁刺激技术对缺血性脑卒中运动功能的改善
Improvement of Motor Function in Ischemic Stroke by Brain-Computer Interface Technology Combined with Repetitive Transcranial Magnetic Stimulation

DOI: 10.12677/ACM.2023.1371510, PP. 10812-10817

Keywords: 脑机接口技术,重复经颅磁刺激技术,脑卒中,运动障碍
Brain-Machine Interface Technology
, Repetitive Transcranial Magnetic Stimulation Technique, Stroke, Movement Disorders

Full-Text   Cite this paper   Add to My Lib

Abstract:

中风是一种十分普遍的、危及生命的神经血管急症,同时也是造成全球成年人长期神经功能障碍的主要原因之一。据估计,每年大约有795,000人经历新的或复发的中风。随着人口日渐老龄化,中风事件的数量预计将持续上升。此外,医疗保健技术的进步降低了中风死亡率,同时导致越来越多的人患有永久性中风后损害。脑卒中后会造成诸多功能障碍,其中运动功能障碍是中风后最常见的并发症,影响了大约三分之二的中风幸存者。能够独立行走是中风后最常见的康复目标。然而,研究表明高达55%~75%的偏瘫中风患者在经历目前的康复直流3~6个月后,步行能力仍受损。因此,需要通过改进目前中风患者的康复技术或策略以来达到改善运动功能的目标。为了治疗这些后遗症,基于运动成像(MI)的脑机接口(BCI)系统和rTMS已显示出作为中风后康复治疗的有效神经康复工具的潜力。
Stroke is a very common and life-threatening neurovascular emergency, as well as one of the lead-ing causes of long-term neurological deficits in adults worldwide. It is estimated that approximately 795,000 people experience new or recurrent strokes each year. With an increasingly aging popula-tion, the number of stroke events is expected to continue to rise. In addition, advances in healthcare technology have reduced stroke mortality while leading to an increasing number of people suffering from permanent post-stroke impairment. Among the many functional impairments that result from a stroke, motor dysfunction is the most common post-stroke complication, affecting approximately two-thirds of stroke survivors. Being able to walk independently is the most common rehabilitation goal after stroke. However, studies have shown that up to 55%~75% of stroke patients with hemi-plegia have impaired walking ability 3~6 months after experiencing current rehabilitation DC. Therefore, the goal of improving motor function needs to be achieved by improving current rehabil-itation techniques or strategies for stroke patients. To treat these sequelae, brain-computer inter-face (BCI) systems based on motion imaging (MI) and rTMS have shown potential as effective neu-rorehabilitation tools for post-stroke rehabilitation.

References

[1]  Lanza, G., et al. (2023) Repetitive Transcranial Magnetic Stimulation in Primary Sleep Disorders. Sleep Medicine Reviews, 67, Article ID: 101735.
https://doi.org/10.1016/j.smrv.2022.101735
[2]  Lebedev, M.A. and Nicolelis, M.A.L. (2017) Brain-Machine Interfaces: From Basic Science to Neuroprostheses and Neurorehabilitation. Physiological Reviews, 97, 767-837.
https://doi.org/10.1152/physrev.00027.2016
[3]  Singh, A., Hussain, A.A., Lal, S. and Guesgen, H.W. (2021) A Comprehensive Review on Critical Issues and Possible Solutions of Motor Imagery Based Electroen-cephalography Brain-Computer Interface. Sensors, 21, Article No. 2173.
https://doi.org/10.3390/s21062173
[4]  Ajiboye, A.B., et al. (2017) Restoration of Reaching and Grasping Move-ments through Brain-Controlled Muscle Stimulation in a Person with Tetraplegia: A Proof-of-Concept Demonstration. Lancet, 389, 1821-1830.
https://doi.org/10.1016/S0140-6736(17)30601-3
[5]  Borton, D., Micera, S., del R Millán, J. and Courtine, G. (2013) Personalized Neuroprosthetics. Science Translational Medicine, 5, Article No. 210rv2.
https://doi.org/10.1126/scitranslmed.3005968
[6]  Sasaki, N., et al. (2017) High-Frequency rTMS on Leg Motor Area in the Early Phase of Stroke. Acta Neurologica Belgica, 117,189-194.
https://doi.org/10.1007/s13760-016-0687-1
[7]  Murguialday, A.R., et al. (2011) Transition from the Locked in to the Completely Locked-in State: A Physiological Analysis. Clinical Neurophysiology, 122, 925-933.
https://doi.org/10.1016/j.clinph.2010.08.019
[8]  V?rbu, K., Muhammad, N. and Muhammad, Y. (2022) Past, Present, and Future of EEG-Based BCI Applications. Sensors, 22, Article No. 3331.
https://doi.org/10.3390/s22093331
[9]  Feng, Z., et al. (2022) Design a Novel BCI for Neurorehabilitation Using Concurrent LFP and EEG Features: A Case Study. IEEE Transactions on Bio-Medical Engineering, 69, 1554-1563.
https://doi.org/10.1109/TBME.2021.3115799
[10]  Schalk, G., et al. (2007) Decoding Two-Dimensional Move-ment Trajectories Using Electrocorticographic Signals in Humans. Journal of Neural Engineering, 4, 264-275.
https://doi.org/10.1088/1741-2560/4/3/012
[11]  Schalk, G., et al. (2008) Two-Dimensional Movement Control Using Electrocorticographic Signals in Humans. Journal of Neural Engineering, 5, 75-84.
https://doi.org/10.1088/1741-2560/5/1/008
[12]  Vidal, J.J. (1973) Toward Direct Brain-Computer Communication. Annual Review of Biophysics and Bioengineering, 2, 157-180.
https://doi.org/10.1146/annurev.bb.02.060173.001105
[13]  Pfurtscheller, G., Müller, G.R., Pfurtscheller, J., Gerner, H.J. and Rupp, R. (2003) ’Thought’-Control of Functional Electrical Stimulation to Restore Hand Grasp in a Patient with Tetraplegia. Neuroscience Letters, 351, 33-36.
https://doi.org/10.1016/S0304-3940(03)00947-9
[14]  Ang, K.K., Guan, C., Phua, K.S., et al. (2015) Facilitating Effects of Transcranial Direct Current Stimulation on Motor Imagery Brain-Computer Interface with Robotic Feedback for Stroke Rehabilitation. Archives of Physical Medicine and Rehabilitation, 96, S79-S87.
https://doi.org/10.1016/j.apmr.2014.08.008
[15]  李明芬, 贾杰, 吴毅, 刘烨, 张丽清, 唐朝正, 刘斯尧. 基于脑机接口电刺激在脑卒中患者上肢康复中的应用研究[J]. 中华物理医学与康复杂志, 2016, 38(6): 409-413.
[16]  Chung, E., Park, S.-I., Jang, Y.-Y. and Lee, B.-H. (2015) Effects of Brain-Computer Interface-Based Functional Electrical Stimulation on Balance and Gait Function in Patients with Stroke: Preliminary Results. Journal of Physical Therapy Science, 27, 513-516.
https://doi.org/10.1589/jpts.27.513
[17]  方文垚, 刘昊, 杨柳, 林思俭, 刘邦亮, 罗军. 脑机接口技术在脑卒中偏瘫患者下肢运动功能康复治疗中的应用[J]. 山东医药, 2018, 58(10): 66-68.
[18]  Cress, R.H. and Fleming, W.C. (1966) Treatment Goals and Selection of Patients for Rehabilitation with Hemiplegia. The Alabama Journal of Medical Sciences, 3, 307-311.
[19]  Charalambous, C.C., Bowden, M.G. and Ad-kins, D.A.L. (2016) Motor Cortex and Motor Cortical Interhemispheric Communication in Walking after Stroke: The Roles of Transcranial Magnetic Stimulation and Animal Models in Our Current and Future Understanding. Neuroreha-bilitation and Neural Repair, 30, 94-102.
https://doi.org/10.1177/1545968315581418
[20]  李雅静, 朱玉连. 经颅磁刺激联合磁共振波谱在脑卒中康复领域的应用进展[J]. 中国康复, 2022, 37(11): 693-697.
[21]  Zhang, Y.Q., Jiang, N. and Yetisen, A.K. (2021) Brain Neurochemical Monitoring. Biosensors & Bioelectronics, 189, Article ID: 113351.
https://doi.org/10.1016/j.bios.2021.113351
[22]  Karatzetzou, S., et al. (2022) Transcranial Magnetic Stimulation Implementation on Stroke Prognosis. Neurological Sciences, 43, 873-888.
https://doi.org/10.1007/s10072-021-05791-1
[23]  Chatzikonstantinou, S., et al. (2021) Electroencephalogram in Dementia with Lewy Bodies: A Systematic Review. Aging Clinical and Experimental Research, 33, 1197-1208.
https://doi.org/10.1007/s40520-020-01576-2
[24]  Lim, S.B., et al. (2021) Brain Activity during Real-Time Walking and with Walking Interventions after Stroke: A Systematic Review. Journal of Neuroengineering and Rehabilitation, 18, Article No. 8.
https://doi.org/10.1186/s12984-020-00797-w
[25]  Lin, Y.-N., Hu, C.-J., Chi, J.-Y., et al. (2015) Effects of Repeti-tive Transcranial Magnetic Stimulation of the Unaffected Hemisphere Leg Motor Area in Patients with Subacute Stroke and Substantial Leg Impairment: A Pilot Study. Journal of Rehabilitation Medicine, 47, 305-310.
https://doi.org/10.2340/16501977-1943
[26]  陶峰, 王传杰, 陈本梅, 仇慕磊, 蒋理想. 低频重复经颅磁刺激联合镜像疗法对脑卒中偏瘫患者下肢运动功能及平衡能力的影响[J]. 中国康复医学杂志, 2022, 37(5): 611-615+622.
[27]  Michel, C.M. and Brunet, D. (2019) EEG Source Imaging: A Practical Review of the Analysis Steps. Frontiers in Neurology, 10, Article 325.
https://doi.org/10.3389/fneur.2019.00325

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133