|
Mine Engineering 2023
基于嵌入式离散裂缝模型的裂缝型碳酸盐岩反应流数值模拟
|
Abstract:
酸化是碳酸盐岩储层中常采用的改造措施。在裂缝型碳酸盐岩储层中,由于天然裂缝的渗透率较高,注入酸可以沿着裂缝深入地层,增加了活酸作用距离。但是在当前的酸化反应流模型中,对于储层中的复杂裂缝尚不能高效处理。为解决这一问题,本文建立了裂缝型碳酸盐岩酸化反应流数学模型。然后基于嵌入式离散裂缝模型对所建模型进行数值求解,将裂缝系统与基岩系统单独进行网格划分,并分析裂缝对蚓孔生长动态的影响。研究结果表明,天然裂缝的存在并不能改变酸蚀蚓孔生成的溶蚀模式以及岩心酸化时的最优注入速度,但能够改变形成的蚓孔结构形态,使突破岩心时所需酸液的体积减少。
Acidification is a retrofitting measure used in carbonate reservoirs. In fractured carbonate reser-voirs, due to the high permeability of natural fractures, acid injection can penetrate into the for-mation along the fractures, increasing the active acid action distance. However, in the current acidizing reaction flow model, complex fractures in the reservoir cannot be treated efficiently. In order to solve this problem, a mathematical model of acidizing reaction flow in fractured carbonate rocks is established. Then, based on the embedded discrete fracture model, the model is solved numerically, and the fracture system and the bedrock system are meshed separately, and the influence of the fracture on the growth dynamics of the wormhole is analyzed. The results show that the existence of natural fractures does not change the dissolution patterns of wormhole formation and the optimal injection rate during core acidification, but it can change the structure and morphology of wormhole formation and reduce the volume of acid solution required for core breakthrough.
[1] | 王润宇, 刘平礼. 孔隙性碳酸盐岩酸蚀蚓孔延伸三维模拟及分析[J]. 石化技术, 2016, 23(5): 193. |
[2] | 李志. 碳酸盐岩储层非常规酸化改造[D]: [硕士学位论文]. 成都: 西南石油大学, 2016. |
[3] | 李小刚, 陈雨松, 邓庄, 等. 碳酸盐岩基质酸化中酸蚀蚓孔模拟回顾与展望[J]. 新疆石油地质, 2017, 38(4): 492-497. |
[4] | 李柏杨. 酸蚀蚓孔动态模拟及竞争机制研究[D]: [硕士学位论文]. 青岛: 中国石油大学(华东), 2018. |
[5] | 齐宁, 李柏杨, 方明君, 等. 基于碳酸盐岩酸化溶蚀形态的酸液最优注入速度界限[J]. 中国石油大学学报(自然科学版), 2017, 41(5): 117-122. |
[6] | Deng, H., Molins, S., Steefel, C., et al. (2016) A 2.5 D Reactive Transport Model for Fracture Alteration Simulation. Environmental Science & Technology, 50, 7564-7571. https://doi.org/10.1021/acs.est.6b02184 |
[7] | Hill, A., Zhu, D., Dong, C., et al. (2001) Computer Model Predicts Matrix Acidizing of Naturally Fractured Carbonate. Journal of Petroleum Technology, 53, 20-25. https://doi.org/10.2118/1001-0020-JPT |
[8] | Hanna, R.B. and Rajaram, H. (1998) Influence of Aperture Variability on Dissolutional Growth of Fissures in Karst Formations. Water Resources Research, 34, 2843-2853. https://doi.org/10.1029/98WR01528 |
[9] | Upadhyay, V.K., Szymczak, P. and Ladd, A.J. (2015) Initial Conditions or Emergence: What Determines Dissolution Patterns in Rough Fractures? Journal of Geophysical Research: Solid Earth, 120, 6102-6121.
https://doi.org/10.1002/2015JB012233 |
[10] | Dong, C., Zhu, D. and Hill, A. (2002) Modeling of the Acidizing Pro-cess in Naturally Fractured Carbonates. SPE Journal, 7, 400-408. https://doi.org/10.2118/81816-PA |
[11] | Dong, C., Zhu, D. and Hill, A. (2002) Acid Penetration in Natural Fracture Networks. SPE Production & Facilities, 17, 160-170. https://doi.org/10.2118/78791-PA |
[12] | Dong, C., Zhu, D. and Hill, A. (2002) Acidizing in Naturally Fractured Carbonate Reservoirs. SPE/DOE Improved Oil Recovery Symposium, Tulsa, April 2002, SPE-75252-MS. https://doi.org/10.2118/75252-MS |
[13] | Li, Y., Liao, Y. and Zhao, J. (2016) Wormhole Dissolution Pattern Study in Complicated Carbonate Rock Based on Two-Scale Continuum Model and Equivalent Seepage Theory. Natural Gas Geoscience, 121-127. |
[14] | Kalia, N. and Balakotaiah, V. (2009) Effect of Medium Heterogeneities on Reactive Dis-solution of Carbonates. Chemical Engineering Science, 64, 376-390. https://doi.org/10.1016/j.ces.2008.10.026 |
[15] | Garipov, T., Karimi-Fard, M. and Tchelepi, H. (2016) Discrete Fracture Model for Coupled Flow and Geomechanics. Computational Geosciences, 20, 149-160. https://doi.org/10.1007/s10596-015-9554-z |
[16] | Sandve, T.H., Berre, I. and Nordbotten, J.M. (2012) An Efficient Multi-Point Flux Approximation Method for Discrete Fracture-Matrix Simulations. Journal of Computational Physics, 231, 3784-3800.
https://doi.org/10.1016/j.jcp.2012.01.023 |
[17] | Therrien, R. and Sudicky, E. (1996) Three-Dimensional Analysis of Variably-Saturated Flow and Solute Transport in Discretely-Fractured Porous Media. Journal of Contaminant Hydrology, 23, 1-44.
https://doi.org/10.1016/0169-7722(95)00088-7 |
[18] | Alotaibi, M., Chen, H. and Sun, S. (2022) Generalized Multiscale Finite Element Methods for the Reduced Model of Darcy Flow in Fractured Porous Media. Journal of Computational and Applied Mathematics, 413, Article ID: 114305.
https://doi.org/10.1016/j.cam.2022.114305 |
[19] | Lee, S.H., Lough, M. and Jensen, C. (2001) Hierarchical Modeling of Flow in Naturally Fractured Formations with Multiple Length Scales. Water Resources Research, 37, 443-455. https://doi.org/10.1029/2000WR900340 |
[20] | Lee, S., Jensen, C. and Lough, M. (2000) Efficient Finite-Difference Model for Flow in a Reservoir with Multiple Length- Scale Fractures. SPE Journal, 5, 268-275. https://doi.org/10.2118/65095-PA |
[21] | 刘丕养. 酸蚀碳酸盐岩反应流蚓孔生成数值模拟研究[D]: [博士学位论文]. 青岛: 中国石油大学(华东), 2017. |
[22] | Fredd, C. and Miller, M. (2000) Validation of Carbonate Matrix Stimulation Models. SPE International Symposium on Formation Damage Control, Lafayette, February 2000, SPE-58713-MS. https://doi.org/10.2118/58713-MS |