|
CD4+、CD8+T淋巴细胞亚群在肿瘤中的表达研究现状及进展
|
Abstract:
随着肿瘤免疫学的进展,肿瘤患者的免疫功能越来越受到大家的重视,目前对于T淋巴细胞亚群在肿瘤微环境及机体内所发挥的功能也逐渐深入。T淋巴细胞依据表面表达的2种辅助受体分子,即分化簇CD4和CD8来分类。本文将对CD4+T淋巴细胞、CD8+T淋巴细胞在肿瘤中表达的相关研究及其发挥的功能进行详细阐述。
With the development of tumor immunology, more and more attention has been paid to the im-mune function of tumor patients. At present, the function of T lymphocyte subsets in the tumor mi-croenvironment and the body has been gradually deepened. T lymphocytes are classified by their surface expression of two coreceptor molecules, namely, the differentiation clusters CD4 and CD8. In this paper, the expression of CD4+T lymphocytes and CD8+T lymphocytes in tumors and their func-tions will be elaborated.
[1] | 熊玉琪, 任秀宝, 卢斌峰, 蒋敬庭. 肿瘤浸润CD4+T淋巴细胞的抗肿瘤免疫机制[J]. 临床检验杂志, 2015, 33(12): 919-922. |
[2] | Prezzi, C., Casciaro, M., Francavilla, V., et al. (2015) Virus-Specific CD8+ T Cells with Type 1 or Type 2 Cytokine Profile Are Related to Different Disease Activity in Chronic Hepatitis C Virus Infection. European Journal of Immunology, 31, 894-906. https://doi.org/10.1002/1521-4141(200103)31:3<894::AID-IMMU894>3.0.CO;2-I |
[3] | Tsuji-Yamada, J., Naka-zawa, M., Minami, M. and Sasaki, T. (2001) Increased Frequency of Interleukin 4 Producing CD4+ and CD8+ Cells in Peripheral Blood from Patients with Systemic Sclerosis. The Journal of Rheumatology, 28, 1252-1258. |
[4] | Fontenot, J.D., Gavin, M.A. and Rudensky, A.Y. (2003) Foxp3 Programs the Development and Function of CD4+CD25+ Regu-latory T Cells. Nature Immunology, 4, 330-336. https://doi.org/10.1038/ni904 |
[5] | Schmitt, N. and Ueno, H. (2015) Regulation of Human Helper T Cell Subset Differentiation by Cytokines. Current Opinion in Immunology, 34, 130-136. https://doi.org/10.1016/j.coi.2015.03.007 |
[6] | Floros, T. and Tarhini, A.A. (2015) Anticancer Cytokines: Biology and Clinical Effects of Interferon-α2, Interleukin (IL)-2, IL-15, IL-21, and IL-12. Seminars in Oncology, 42, 539-548. https://doi.org/10.1053/j.seminoncol.2015.05.015 |
[7] | Bettelli, E., Korn, T., Oukka, M. and Kuchroo, V.K. (2008) Induction and Effector Functions of TH17 Cells. Nature, 453, 1051-1057. https://doi.org/10.1038/nature07036 |
[8] | Zhai, Y., Busuttil, R.W., Ghobrial, F.M. and Kupiec-Weglinski, J.W. (1999) Th1 and Th2 Cytokines in Organ Trans- plantation: Paradigm Lost? Critical Reviews in Immunology, 19, 155-172.
https://doi.org/10.1615/CritRevImmunol.v19.i2.40 |
[9] | Bonecchi, R., Bianchi, G., Bordignon, P.P., et al. (1998) Differential Expression of Chemokine Receptors and Chemotactic Responsiveness of Type 1 T Helper Cells (Th1s) and Th2s. Journal of Experimental Medicine, 187, 129-134.
https://doi.org/10.1084/jem.187.1.129 |
[10] | Jung, S. and Littman, D.R. (1999) Chemokine Receptors in Lymphoid Organ Homeostasis. Current Opinion in Immu- nology, 11, 319-325. https://doi.org/10.1016/S0952-7915(99)80051-X |
[11] | Shin, H.S., See, H.-J., Jung, S.Y., et al. (2015) Turmeric (Curcuma longa) Attenuates Food Allergy Symptoms by Regulating Type 1/Type 2 Helper T Cells (Th1/Th2) Balance in a Mouse Model of Food Allergy. Journal of Ethno- pharmacology, 175, 21-29. https://doi.org/10.1016/j.jep.2015.08.038 |
[12] | Wang, K. and Karin, M. (2015) Tumor-Elicited Inflammation and Colorectal Cancer. In: Wang, X.-Y. and Fisher, P.B., Eds., Advances in Cancer Research, Vol. 128, Academic Press, Cambridge, 173-196.
https://doi.org/10.1016/bs.acr.2015.04.014 |
[13] | Domagala-Kulawik, J., Osinska, I. and Hoser, G. (2014) Mecha-nisms of Immune Response Regulation in Lung Cancer. Translational Lung Cancer Research, 3, 15-22. |
[14] | Goswami, R., Jabeen, R., Yagi, R., et al. (2012) STAT6-Dependent Regulation of Th9 Development. Journal of Immunology, 188, 968-975. https://doi.org/10.4049/jimmunol.1102840 |
[15] | Ramming, A., Druzd, D., Leipe, J., Schulze-Koops, H. and Skapenko, A. (2012) Maturation-Related Histone Modifications in the PU.1 Promoter Regulate Th9-Cell Develop-ment. Blood, 119, 4665-4674.
https://doi.org/10.1182/blood-2011-11-392589 |
[16] | Schmitt, E., Klein, M. and Bopp, T. (2014) Th9 Cells, New Players in Adaptive Immunity. Trends in Immunology, 35, 61-68. https://doi.org/10.1016/j.it.2013.10.004 |
[17] | Staudt, V., Bothur, E., Klein, M., et al. (2010) Interferon-Regulatory Factor 4 Is Essential for the Developmental Program of T Helper 9 Cells. Immunity, 33, 192-202. https://doi.org/10.1016/j.immuni.2010.07.014 |
[18] | Soroosh, P. and Doherty, T.A. (2009) Th9 and Allergic Disease. Immunology, 127, 450-458.
https://doi.org/10.1111/j.1365-2567.2009.03114.x |
[19] | Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. and Toda, M. (1995) Immunologic Self-Tolerance Maintained by Activated T Cells Expressing IL-2 Receptor Alpha-Chains (CD25). Breakdown of a Single Mechanism of Self-Tolerance Causes Various Autoimmune Diseases. Journal of Im-munology, 155, 1151-1164.
https://doi.org/10.4049/jimmunol.155.3.1151 |
[20] | Hua, J., Davis, S.P., Hill, J.A. and Yamagata, T. (2015) Diverse Gene Expression in Human Regulatory T Cell Subsets Uncovers Connection between Regulatory T Cell Genes and Sup-pressive Function. The Journal of Immunology, 195, 3642-3653. https://doi.org/10.4049/jimmunol.1500349 |
[21] | Miragaia, R.J., Gomes, T., Chomka, A., et al. (2019) Single-Cell Transcriptomics of Regulatory T Cells Reveals Trajectories of Tissue Adaptation. Immunity, 50, 493-504. https://doi.org/10.1016/j.immuni.2019.01.001 |
[22] | Albert, M.H., Anasetti, C. and Yu, X.-Z. (2006) T Regulatory Cells as an Immunotherapy for Transplantation. Expert Opinion on Biological Therapy, 6, 315-324. https://doi.org/10.1517/14712598.6.4.315 |
[23] | Liyanage, U.K., Moore, T.T., Joo, H.-G., et al. (2002) Prevalence of Regulatory T Cells Is Increased in Peripheral Blood and Tumor Microenvironment of Patients with Pancreas or Breast Adenocarcinoma. Journal of Immunology, 169, 2756-2761. https://doi.org/10.4049/jimmunol.169.5.2756 |
[24] | Wolf, A.M., Wolf, D., Steurer, M., et al. (2003) Increase of Regulatory T Cells in the Peripheral Blood of Cancer Patients. Clinical Cancer Research, 9, 606-612. |
[25] | Ichihara, F., Kono, K., Takahashi, A., et al. (2003) Increased Populations of Regulatory T Cells in Peripheral Blood and Tu-mor-Infiltrating Lymphocytes in Patients with Gastric and Esophageal Cancers. Clinical Cancer Research, 9, 4404- 4408. |
[26] | Curiel, T., Coukos, G., Zou, L., et al. (2004) Specific Recruitment of Regulatory T Cells in Ovarian Carci-noma Fosters Immune Privilege and Predicts Reduced Survival. Nature Medicine, 10, 942-949. https://doi.org/10.1038/nm1093 |
[27] | Chen, W., Jin, W., Hardegen, N., et al. (2013) Conversion of Peripheral CD4+CD25? Naive T Cells to CD4+CD25+ Regulatory T Cells by TGF-β Induction of Transcription Factor Foxp3. Journal of Experimental Medicine, 198, 1875- 1886. https://doi.org/10.1084/jem.20030152 |
[28] | 吴介恒, 杨安钢, 温伟红. PD-1/PD-L1参与肿瘤免疫逃逸的研究进展[J]. 细胞与分子免疫学杂志, 2014, 30(7): 777-780. |
[29] | Ghebeh, H., Barhoush, E., Tulbah, A., et al. (2008) FOXP3+ Tregs and B7-H1+/PD-1+T Lymphocytes Co-Infiltrate the Tumor Tissues of High-Risk Breast Cancer Patients: Implication for Immunotherapy. BMC Cancer, 8, Article No. 57.
https://doi.org/10.1186/1471-2407-8-57 |
[30] | Turnis, M.E., Sawant, D.V., Szymczak-Workman, A.L., et al. (2016) Interleukin-35 Limits Anti-Tumor Immunity. Immunity, 44, 316-329. https://doi.org/10.1016/j.immuni.2016.01.013 |
[31] | Zhang, S., Zhang, H. and Zhao, J. (2009) The Role of CD4 T Cell Help for CD8 CTL Activation. Biochemical & Biophysical Research Communications, 384, 405-408. https://doi.org/10.1016/j.bbrc.2009.04.134 |
[32] | Martin, M.D. and Badovinac, V.P. (2018) Defining Memory CD8 T Cell. Frontiers in Immunology, 9, Article 2692.
https://doi.org/10.3389/fimmu.2018.02692 |
[33] | Han, J., Khatwani, N., Searles, T. G., Turk, M. J., & Angeles, C. V. (2020) Memory CD8+ T Cell Responses to Cancer. Seminars in Immunology, 49, Article ID: 101435. https://doi.org/10.1016/j.smim.2020.101435 |
[34] | Hwang, H.S., Kim, D. and Choi, J. (2021) Distinct Mutational Profile and Immune Microenvironment in Microsatellite-Unstable and POLE-Mutated Tumors. Journal for Immuno-Therapy of Cancer, 9, e002797.
https://doi.org/10.1136/jitc-2021-002797 |
[35] | Toge, T., Kuroi, K., Kuninobu, H., et al. (1988) Role of the Spleen in Immunosuppression of Gastric Cancer: Predominance of Suppressor Precursor and Suppressor Inducer T Cells in the Recirculating Spleen Cells. Clinical & Experimental Immunology, 74, 409-412. |
[36] | Serafini, P., Mgebroff, S., Noonan, K. and Borrello, I. (2008) Myeloid-Derived Suppressor Cells Promote Cross- Tolerance in B-Cell Lymphoma by Ex-panding Regulatory T Cells. Cancer Research, 68, 5439-5449.
https://doi.org/10.1158/0008-5472.CAN-07-6621 |
[37] | Niederlova, V., Tsyklauri, O., Chadimova, T. and Stepanek, O. (2021) CD8+ Tregs Revisited: A Heterogeneous Population with Different Phenotypes and Properties. European Journal of Immunology, 51, 512-530.
https://doi.org/10.1002/eji.202048614 |
[38] | Cosmi, L., Liotta, F., Lazzeri, E., et al. (2003) Human CD8+CD25+ Thymocytes Share Phenotypic and Functional Features with CD4+CD25+ Regulatory Thymocytes. Blood, 102, 4107-4114.
https://doi.org/10.1182/blood-2003-04-1320 |
[39] | 周文超, 蔡祥胜, 熊小敏, 等. CD4+CD25+CD127Low调节性T细胞在原发性肝癌患者外周血的表达及临床意义[J]. 国际检验医学杂志, 2020, 41(4): 403-405, 409. |
[40] | Olguín, J.E., Medina-Andrade, I., Molina, E., et al. (2018) Early and Partial Reduction in CD4+Foxp3+ Regulatory T Cells during Colitis-Associated Colon Cancer Induces CD4+ and CD8+ T Cell Activation Inhibiting Tumorigenesis. Journal of Can-cer, 9, 239-249. https://doi.org/10.7150/jca.21336 |
[41] | 卢永红. 卵巢癌患者组织及外周血CD8+T细胞中调节性T细胞相关分子标志物的表达及意义[J]. 实用癌症杂志, 2019, 34(8): 1271-1274. |
[42] | Zahran, A.M., Nafady-Hego, H., Mansor, S.G., Abbas, W.A., Abdel-Malek, M.O., Mekky, M.A. and Hetta, H.F. (2019) Increased Frequency and FOXP3 Expression of Human CD8+CD25High+ T Lymphocytes and Its Relation to CD4 Regulatory T Cells in Patients with Hepatocellular Carcinoma. Human Immunology, 80, 510-516.
https://doi.org/10.1016/j.humimm.2019.03.014 |
[43] | Zanetti, M. (2015) Tapping CD4 T Cells for Cancer Immuno-therapy: The Choice of Personalized Genomics. The Journal of Immunology, 194, 2049-2056. https://doi.org/10.4049/jimmunol.1402669 |
[44] | Schreiber, R.D., Old, L.J. and Smyth, M.J. (2011) Cancer Immu-noediting: Integrating Immunity’s Roles in Cancer Suppression and Promotion. Science, 331, 1565-1570. https://doi.org/10.1126/science.1203486 |
[45] | Chen, D.S. and Mellman, I. (2013) Oncology Meets Immunology: The Cancer-Immunity Cycle. Immunity, 39, 1-10.
https://doi.org/10.1016/j.immuni.2013.07.012 |
[46] | Engelhardt, B. and Ransohoff, R.M. (2012) Capture, Crawl, Cross: The T Cell Code to Breach the Blood-Brain Barriers. Trends in Immunology, 33, 579-589. https://doi.org/10.1016/j.it.2012.07.004 |
[47] | Tsai, A.K. and Davila, E. (2016) Producer T Cells: Using Genetically Engineered T Cells as Vehicles to Generate and Deliver Therapeutics to Tumors. OncoImmunology, 5, e1122158. https://doi.org/10.1080/2162402X.2015.1122158 |
[48] | Fife, B.T. and Bluestone, J.A. (2008) Control of Peripheral T-Cell Tolerance and Autoimmunity via the CTLA-4 and PD-1 Pathways. Immunological Reviews, 224, 166-182. https://doi.org/10.1111/j.1600-065X.2008.00662.x |
[49] | 莫敦昌, 黄剑锋, 罗鹏辉, 等. T淋巴细胞相关肿瘤免疫疗法的应用现状及进展[J]. 世界最新医学信息文摘, 2019, 19(24): 36-37. |
[50] | Ma, W., Gilligan, B.M., Yuan, J. and Li, T. (2016) Current Status and Perspectives in Translational Biomarker Research for PD-1/PD-L1 Immune Check-point Blockade Therapy. Journal of Hematology & Oncology, 9, Article No. 47.
https://doi.org/10.1186/s13045-016-0277-y |
[51] | Enblad, G., Karlsson, H. and Loskog, A.S.I. (2015) CAR T-Cell Therapy: The Role of Physical Barriers and Immunosuppression in Lymphoma. Human Gene Therapy, 26, 498-505. https://doi.org/10.1089/hum.2015.054 |