全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

CD4+、CD8+T淋巴细胞亚群在肿瘤中的表达研究现状及进展
Research Status and Progress on the Expression of CD4+, CD8+T Lymphocyte Subsets in Tumor

DOI: 10.12677/ACM.2023.1371497, PP. 10720-10726

Keywords: CD4+T淋巴细胞,CD8+T淋巴细胞,免疫功能
CD4+T Lymphocytes
, CD8+T Lymphocytes, Immunefunction

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着肿瘤免疫学的进展,肿瘤患者的免疫功能越来越受到大家的重视,目前对于T淋巴细胞亚群在肿瘤微环境及机体内所发挥的功能也逐渐深入。T淋巴细胞依据表面表达的2种辅助受体分子,即分化簇CD4和CD8来分类。本文将对CD4+T淋巴细胞、CD8+T淋巴细胞在肿瘤中表达的相关研究及其发挥的功能进行详细阐述。
With the development of tumor immunology, more and more attention has been paid to the im-mune function of tumor patients. At present, the function of T lymphocyte subsets in the tumor mi-croenvironment and the body has been gradually deepened. T lymphocytes are classified by their surface expression of two coreceptor molecules, namely, the differentiation clusters CD4 and CD8. In this paper, the expression of CD4+T lymphocytes and CD8+T lymphocytes in tumors and their func-tions will be elaborated.

References

[1]  熊玉琪, 任秀宝, 卢斌峰, 蒋敬庭. 肿瘤浸润CD4+T淋巴细胞的抗肿瘤免疫机制[J]. 临床检验杂志, 2015, 33(12): 919-922.
[2]  Prezzi, C., Casciaro, M., Francavilla, V., et al. (2015) Virus-Specific CD8+ T Cells with Type 1 or Type 2 Cytokine Profile Are Related to Different Disease Activity in Chronic Hepatitis C Virus Infection. European Journal of Immunology, 31, 894-906.
https://doi.org/10.1002/1521-4141(200103)31:3<894::AID-IMMU894>3.0.CO;2-I
[3]  Tsuji-Yamada, J., Naka-zawa, M., Minami, M. and Sasaki, T. (2001) Increased Frequency of Interleukin 4 Producing CD4+ and CD8+ Cells in Peripheral Blood from Patients with Systemic Sclerosis. The Journal of Rheumatology, 28, 1252-1258.
[4]  Fontenot, J.D., Gavin, M.A. and Rudensky, A.Y. (2003) Foxp3 Programs the Development and Function of CD4+CD25+ Regu-latory T Cells. Nature Immunology, 4, 330-336.
https://doi.org/10.1038/ni904
[5]  Schmitt, N. and Ueno, H. (2015) Regulation of Human Helper T Cell Subset Differentiation by Cytokines. Current Opinion in Immunology, 34, 130-136.
https://doi.org/10.1016/j.coi.2015.03.007
[6]  Floros, T. and Tarhini, A.A. (2015) Anticancer Cytokines: Biology and Clinical Effects of Interferon-α2, Interleukin (IL)-2, IL-15, IL-21, and IL-12. Seminars in Oncology, 42, 539-548.
https://doi.org/10.1053/j.seminoncol.2015.05.015
[7]  Bettelli, E., Korn, T., Oukka, M. and Kuchroo, V.K. (2008) Induction and Effector Functions of TH17 Cells. Nature, 453, 1051-1057.
https://doi.org/10.1038/nature07036
[8]  Zhai, Y., Busuttil, R.W., Ghobrial, F.M. and Kupiec-Weglinski, J.W. (1999) Th1 and Th2 Cytokines in Organ Trans- plantation: Paradigm Lost? Critical Reviews in Immunology, 19, 155-172.
https://doi.org/10.1615/CritRevImmunol.v19.i2.40
[9]  Bonecchi, R., Bianchi, G., Bordignon, P.P., et al. (1998) Differential Expression of Chemokine Receptors and Chemotactic Responsiveness of Type 1 T Helper Cells (Th1s) and Th2s. Journal of Experimental Medicine, 187, 129-134.
https://doi.org/10.1084/jem.187.1.129
[10]  Jung, S. and Littman, D.R. (1999) Chemokine Receptors in Lymphoid Organ Homeostasis. Current Opinion in Immu- nology, 11, 319-325.
https://doi.org/10.1016/S0952-7915(99)80051-X
[11]  Shin, H.S., See, H.-J., Jung, S.Y., et al. (2015) Turmeric (Curcuma longa) Attenuates Food Allergy Symptoms by Regulating Type 1/Type 2 Helper T Cells (Th1/Th2) Balance in a Mouse Model of Food Allergy. Journal of Ethno- pharmacology, 175, 21-29.
https://doi.org/10.1016/j.jep.2015.08.038
[12]  Wang, K. and Karin, M. (2015) Tumor-Elicited Inflammation and Colorectal Cancer. In: Wang, X.-Y. and Fisher, P.B., Eds., Advances in Cancer Research, Vol. 128, Academic Press, Cambridge, 173-196.
https://doi.org/10.1016/bs.acr.2015.04.014
[13]  Domagala-Kulawik, J., Osinska, I. and Hoser, G. (2014) Mecha-nisms of Immune Response Regulation in Lung Cancer. Translational Lung Cancer Research, 3, 15-22.
[14]  Goswami, R., Jabeen, R., Yagi, R., et al. (2012) STAT6-Dependent Regulation of Th9 Development. Journal of Immunology, 188, 968-975.
https://doi.org/10.4049/jimmunol.1102840
[15]  Ramming, A., Druzd, D., Leipe, J., Schulze-Koops, H. and Skapenko, A. (2012) Maturation-Related Histone Modifications in the PU.1 Promoter Regulate Th9-Cell Develop-ment. Blood, 119, 4665-4674.
https://doi.org/10.1182/blood-2011-11-392589
[16]  Schmitt, E., Klein, M. and Bopp, T. (2014) Th9 Cells, New Players in Adaptive Immunity. Trends in Immunology, 35, 61-68.
https://doi.org/10.1016/j.it.2013.10.004
[17]  Staudt, V., Bothur, E., Klein, M., et al. (2010) Interferon-Regulatory Factor 4 Is Essential for the Developmental Program of T Helper 9 Cells. Immunity, 33, 192-202.
https://doi.org/10.1016/j.immuni.2010.07.014
[18]  Soroosh, P. and Doherty, T.A. (2009) Th9 and Allergic Disease. Immunology, 127, 450-458.
https://doi.org/10.1111/j.1365-2567.2009.03114.x
[19]  Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. and Toda, M. (1995) Immunologic Self-Tolerance Maintained by Activated T Cells Expressing IL-2 Receptor Alpha-Chains (CD25). Breakdown of a Single Mechanism of Self-Tolerance Causes Various Autoimmune Diseases. Journal of Im-munology, 155, 1151-1164.
https://doi.org/10.4049/jimmunol.155.3.1151
[20]  Hua, J., Davis, S.P., Hill, J.A. and Yamagata, T. (2015) Diverse Gene Expression in Human Regulatory T Cell Subsets Uncovers Connection between Regulatory T Cell Genes and Sup-pressive Function. The Journal of Immunology, 195, 3642-3653.
https://doi.org/10.4049/jimmunol.1500349
[21]  Miragaia, R.J., Gomes, T., Chomka, A., et al. (2019) Single-Cell Transcriptomics of Regulatory T Cells Reveals Trajectories of Tissue Adaptation. Immunity, 50, 493-504.
https://doi.org/10.1016/j.immuni.2019.01.001
[22]  Albert, M.H., Anasetti, C. and Yu, X.-Z. (2006) T Regulatory Cells as an Immunotherapy for Transplantation. Expert Opinion on Biological Therapy, 6, 315-324.
https://doi.org/10.1517/14712598.6.4.315
[23]  Liyanage, U.K., Moore, T.T., Joo, H.-G., et al. (2002) Prevalence of Regulatory T Cells Is Increased in Peripheral Blood and Tumor Microenvironment of Patients with Pancreas or Breast Adenocarcinoma. Journal of Immunology, 169, 2756-2761.
https://doi.org/10.4049/jimmunol.169.5.2756
[24]  Wolf, A.M., Wolf, D., Steurer, M., et al. (2003) Increase of Regulatory T Cells in the Peripheral Blood of Cancer Patients. Clinical Cancer Research, 9, 606-612.
[25]  Ichihara, F., Kono, K., Takahashi, A., et al. (2003) Increased Populations of Regulatory T Cells in Peripheral Blood and Tu-mor-Infiltrating Lymphocytes in Patients with Gastric and Esophageal Cancers. Clinical Cancer Research, 9, 4404- 4408.
[26]  Curiel, T., Coukos, G., Zou, L., et al. (2004) Specific Recruitment of Regulatory T Cells in Ovarian Carci-noma Fosters Immune Privilege and Predicts Reduced Survival. Nature Medicine, 10, 942-949.
https://doi.org/10.1038/nm1093
[27]  Chen, W., Jin, W., Hardegen, N., et al. (2013) Conversion of Peripheral CD4+CD25? Naive T Cells to CD4+CD25+ Regulatory T Cells by TGF-β Induction of Transcription Factor Foxp3. Journal of Experimental Medicine, 198, 1875- 1886.
https://doi.org/10.1084/jem.20030152
[28]  吴介恒, 杨安钢, 温伟红. PD-1/PD-L1参与肿瘤免疫逃逸的研究进展[J]. 细胞与分子免疫学杂志, 2014, 30(7): 777-780.
[29]  Ghebeh, H., Barhoush, E., Tulbah, A., et al. (2008) FOXP3+ Tregs and B7-H1+/PD-1+T Lymphocytes Co-Infiltrate the Tumor Tissues of High-Risk Breast Cancer Patients: Implication for Immunotherapy. BMC Cancer, 8, Article No. 57.
https://doi.org/10.1186/1471-2407-8-57
[30]  Turnis, M.E., Sawant, D.V., Szymczak-Workman, A.L., et al. (2016) Interleukin-35 Limits Anti-Tumor Immunity. Immunity, 44, 316-329.
https://doi.org/10.1016/j.immuni.2016.01.013
[31]  Zhang, S., Zhang, H. and Zhao, J. (2009) The Role of CD4 T Cell Help for CD8 CTL Activation. Biochemical & Biophysical Research Communications, 384, 405-408.
https://doi.org/10.1016/j.bbrc.2009.04.134
[32]  Martin, M.D. and Badovinac, V.P. (2018) Defining Memory CD8 T Cell. Frontiers in Immunology, 9, Article 2692.
https://doi.org/10.3389/fimmu.2018.02692
[33]  Han, J., Khatwani, N., Searles, T. G., Turk, M. J., & Angeles, C. V. (2020) Memory CD8+ T Cell Responses to Cancer. Seminars in Immunology, 49, Article ID: 101435.
https://doi.org/10.1016/j.smim.2020.101435
[34]  Hwang, H.S., Kim, D. and Choi, J. (2021) Distinct Mutational Profile and Immune Microenvironment in Microsatellite-Unstable and POLE-Mutated Tumors. Journal for Immuno-Therapy of Cancer, 9, e002797.
https://doi.org/10.1136/jitc-2021-002797
[35]  Toge, T., Kuroi, K., Kuninobu, H., et al. (1988) Role of the Spleen in Immunosuppression of Gastric Cancer: Predominance of Suppressor Precursor and Suppressor Inducer T Cells in the Recirculating Spleen Cells. Clinical & Experimental Immunology, 74, 409-412.
[36]  Serafini, P., Mgebroff, S., Noonan, K. and Borrello, I. (2008) Myeloid-Derived Suppressor Cells Promote Cross- Tolerance in B-Cell Lymphoma by Ex-panding Regulatory T Cells. Cancer Research, 68, 5439-5449.
https://doi.org/10.1158/0008-5472.CAN-07-6621
[37]  Niederlova, V., Tsyklauri, O., Chadimova, T. and Stepanek, O. (2021) CD8+ Tregs Revisited: A Heterogeneous Population with Different Phenotypes and Properties. European Journal of Immunology, 51, 512-530.
https://doi.org/10.1002/eji.202048614
[38]  Cosmi, L., Liotta, F., Lazzeri, E., et al. (2003) Human CD8+CD25+ Thymocytes Share Phenotypic and Functional Features with CD4+CD25+ Regulatory Thymocytes. Blood, 102, 4107-4114.
https://doi.org/10.1182/blood-2003-04-1320
[39]  周文超, 蔡祥胜, 熊小敏, 等. CD4+CD25+CD127Low调节性T细胞在原发性肝癌患者外周血的表达及临床意义[J]. 国际检验医学杂志, 2020, 41(4): 403-405, 409.
[40]  Olguín, J.E., Medina-Andrade, I., Molina, E., et al. (2018) Early and Partial Reduction in CD4+Foxp3+ Regulatory T Cells during Colitis-Associated Colon Cancer Induces CD4+ and CD8+ T Cell Activation Inhibiting Tumorigenesis. Journal of Can-cer, 9, 239-249.
https://doi.org/10.7150/jca.21336
[41]  卢永红. 卵巢癌患者组织及外周血CD8+T细胞中调节性T细胞相关分子标志物的表达及意义[J]. 实用癌症杂志, 2019, 34(8): 1271-1274.
[42]  Zahran, A.M., Nafady-Hego, H., Mansor, S.G., Abbas, W.A., Abdel-Malek, M.O., Mekky, M.A. and Hetta, H.F. (2019) Increased Frequency and FOXP3 Expression of Human CD8+CD25High+ T Lymphocytes and Its Relation to CD4 Regulatory T Cells in Patients with Hepatocellular Carcinoma. Human Immunology, 80, 510-516.
https://doi.org/10.1016/j.humimm.2019.03.014
[43]  Zanetti, M. (2015) Tapping CD4 T Cells for Cancer Immuno-therapy: The Choice of Personalized Genomics. The Journal of Immunology, 194, 2049-2056.
https://doi.org/10.4049/jimmunol.1402669
[44]  Schreiber, R.D., Old, L.J. and Smyth, M.J. (2011) Cancer Immu-noediting: Integrating Immunity’s Roles in Cancer Suppression and Promotion. Science, 331, 1565-1570.
https://doi.org/10.1126/science.1203486
[45]  Chen, D.S. and Mellman, I. (2013) Oncology Meets Immunology: The Cancer-Immunity Cycle. Immunity, 39, 1-10.
https://doi.org/10.1016/j.immuni.2013.07.012
[46]  Engelhardt, B. and Ransohoff, R.M. (2012) Capture, Crawl, Cross: The T Cell Code to Breach the Blood-Brain Barriers. Trends in Immunology, 33, 579-589.
https://doi.org/10.1016/j.it.2012.07.004
[47]  Tsai, A.K. and Davila, E. (2016) Producer T Cells: Using Genetically Engineered T Cells as Vehicles to Generate and Deliver Therapeutics to Tumors. OncoImmunology, 5, e1122158.
https://doi.org/10.1080/2162402X.2015.1122158
[48]  Fife, B.T. and Bluestone, J.A. (2008) Control of Peripheral T-Cell Tolerance and Autoimmunity via the CTLA-4 and PD-1 Pathways. Immunological Reviews, 224, 166-182.
https://doi.org/10.1111/j.1600-065X.2008.00662.x
[49]  莫敦昌, 黄剑锋, 罗鹏辉, 等. T淋巴细胞相关肿瘤免疫疗法的应用现状及进展[J]. 世界最新医学信息文摘, 2019, 19(24): 36-37.
[50]  Ma, W., Gilligan, B.M., Yuan, J. and Li, T. (2016) Current Status and Perspectives in Translational Biomarker Research for PD-1/PD-L1 Immune Check-point Blockade Therapy. Journal of Hematology & Oncology, 9, Article No. 47.
https://doi.org/10.1186/s13045-016-0277-y
[51]  Enblad, G., Karlsson, H. and Loskog, A.S.I. (2015) CAR T-Cell Therapy: The Role of Physical Barriers and Immunosuppression in Lymphoma. Human Gene Therapy, 26, 498-505.
https://doi.org/10.1089/hum.2015.054

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133