全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于ConSinGan模型的探地雷达病害样本生成方法
Ground Penetrating Radar Disease Image Sample Generation Method Based on ConSinGan Model

DOI: 10.12677/SEA.2023.123054, PP. 553-566

Keywords: 探地雷达,特征学习,ConSinGan,路基病害,对抗式生成网络
Ground Penetrating Radar
, Feature Learning, ConSinGan, Roadbed Disease, Adversarial Generative Network

Full-Text   Cite this paper   Add to My Lib

Abstract:

探地雷达路基病害智能识别是探地雷达工程探测领域中的一个重要研究分支。针对目前识别任务中缺乏公开数据集,病害样本数量较少和病害类别之间样本不均衡的问题提出基于ConSinGan对抗式生成网络模型的病害样本生成算法MConSinGan。首先,算法利用特征选择的思想设计特征学习模块,并将该模块添加到生成器的头部和尾部,加强不同阶段的生成器之间的联系,提高生成器网络对主要病害特征的学习能力,提取特定区域的有效信息,解决最初模型在生成病害样本的过程中存在的特征不完整的问题;其次,根据每个阶段中图像的放缩比例,以分段函数的形式动态改变每个阶段的迭代次数,平衡因添加特征学习模块而对网络整体增加的训练开销,同时提高生成样本之间的差异性;最后,将改进后的模型应用于实际探地雷达病害图像生成问题中,通过对比实验和消融实验对生成结果进行定量和定性分析。另一方面,将原模型与本文改进模型的训练开销和每阶段训练的平均速度进行比较,从模型训练性能的角度对模型进行评估。实验结果表明,所提算法在探地雷达路基病害图像生成问题中,其生成图像的SIFID值较原模型平均降低了26.5%,MS-SSIM值平均升高了75.7%,在保证训练开销增幅不大的情况下,兼顾生成数据的真实性和生成样本间的多样性。证明了该算法在探地雷达病害样本数据生成问题中能够取得较好的效果。
Intelligent recognition of ground penetrating radar (GPR) subgrade damage is an important research branch in the field of GPR engineering detection. Aiming at the problems of lack of public data set in current recognition tasks, small number of disease samples and unbalanced samples among disease categories, a disease sample generation algorithm MConSinGan based on ConSinGan antagonistic generation network model was proposed. First, the algorithm uses the idea of feature selection to design a feature learning module, and adds the module to the head and tail of the generator to strengthen the connection between generators at different stages, improve the learning ability of the generator network to the main disease features, extract effective information in a specific region, and solve the problem of incomplete features in the process of generating disease samples in the initial model. Secondly, according to the scaling ratio of images in each stage, the number of iterations in each stage is dynamically changed in the form of piecewise function, which balances the increased training cost of the whole network due to the addition of feature learning module and improves the difference between generated samples. Finally, the improved model is applied to the actual ground-penetrating radar disease image generation problem, and the generated results are analyzed quantitatively and qualitatively through comparison experiment and ablation experiment. On the other hand, the training cost and the average training speed of each stage were compared between the original model and the improved model, and the model was evaluated from the perspective of training performance. Experimental results show that the proposed algorithm reduces the SIFID value of the generated image by 26.5% and increases the MS-SSIM value by 75.7% compared with the original model in the problem of ground- penetrating radar subgrade disease image generation. Under the condition that the training cost is not greatly increased, the

References

[1]  Bao, Y.W., Gao, R.X., Guo, D., et al. (2015) Forward Modelling and Detection of GPR in Urban Road Base Disease. Chemical Engineering Transactions, 46, 445-450.
[2]  李博, 赵永辉, 胡书凡, 等. 基于哈希算法的地下管线探地雷达图像智能识别[J]. 地球物理学进展, 2022, 37(1): 386-396.
[3]  孙忠辉, 刘金坤, 张新平, 等. 基于GprMax的隧道衬砌地质雷达检测正演模拟与实测数据分析[J]. 工程地球物理学报, 2013, 10(5): 730-735.
[4]  黄紫旗, 刘小珠, 石英, 等. 基于数据增广的道路场景小目标检测[J]. 武汉理工大学学报, 2022, 44(11): 79-87.
[5]  陈英, 林洪平, 张伟, 等. 医学图像数据集扩充方法研究进展[J]. 生物医学工程学杂志, 2023, 40(1): 185-192.
[6]  赵迪, 叶盛波, 周斌. 基于Grad-CAM的探地雷达公路地下目标检测算法[J]. 电子测量技术, 2020, 43(10): 113-118.
[7]  欧阳雯琪, 徐昆. Mask-2-Human: 基于生成式对抗网络的人物图像生成方法[J]. 中国科技论文, 2019, 14(3): 255-260.
[8]  张凯, 陈亚军, 张俊. 生成对抗网络在医学小样本数据中的应用[J]. 内江师范学院学报, 2020, 35(4): 57-60.
[9]  颜贝, 张礼, 张建林, 等. 基于残差结构的对抗式网络图像生成方法[J]. 激光与光电子学进展, 2020, 57(18): 310-317.
[10]  蔡高勇. 基于深度卷积生成对抗网络的小样本植物病害识别问题研究[D]: [硕士学位论文]. 重庆: 重庆大学, 2019.
[11]  肖思哲, 刘振国, 闫志鸿, 等. 基于生成对抗网络的小样本激光焊接缺陷数据集生成[J]. 焊接学报, 2022, 43(10): 43-48+115-116.
[12]  Zhang, X., Han, L.X., et al. (2021) A Gans-Based Deep Learning Framework for Automatic Subsurface Object Recognition from Ground Penetrating Radar Data. IEEE Access, 9, 39009-39018.
https://doi.org/10.1109/ACCESS.2021.3064205
[13]  岳云鹏, 刘海, 马力行, 等. 基于生成对抗网络的探地雷达高精度图像生成方法[C]//中国地球物理学会地球物理技术委员会. 中国地球物理学会地球物理技术委员会第九届学术会议——全域地球物理探测与智能感知学术研讨会会议摘要集. 2021: 223-224.
[14]  王星, 高峰, 陈吉, 郝鹏程, 等. 基于GAN网络的煤岩图像样本生成方法[J]. 煤炭学报, 2021, 46(9): 3066-3078.
[15]  Hinz, T., Fisher, M., Wang, O., et al. (2021) Improved Techniques for Training Single-Image Gans. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, 3-7 January 2023, 1300-1309.
https://doi.org/10.1109/WACV48630.2021.00134
[16]  白旭, 陈贯一, 李壮, 等. 一种基于SinGAN算法的探地雷达地下空洞目标自动识别方法[P]. 中国专利, CN114882236A. 2022-08-09.
[17]  Shaham, T.R., Dekel, T. and Michaeli, T. (2019) Singan: Learning a Generative Model from a Single Natural Image. Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, 27 October-2 November 2019, 4570-4580.
https://doi.org/10.1109/ICCV.2019.00467
[18]  Karras, T., Aila, T., Laine, S., et al. (2017) Progressive Growing of Gans for Improved Quality, Stability, and Variation.
[19]  胡文杰, 吴晓波, 李波, 等. 基于Self-Attention的单样本ConSinGAN模型的工业缺陷样本图像生成[J]. 中南民族大学学报(自然科学版), 2022, 41(3): 356-364.
[20]  王磊, 杨军, 张驰宇, 等. 结合混合注意力的双判别生成对抗网络[J/OL]. 计算机工程与应用: 1-12.
https://kns.cnki.net/kcms/detail/11.2127.TP.20230214.1553.070.html, 2023-03-13.
[21]  闫志杰, 张凌浩, 贾振堂, 等. 基于Tw_Cycle Gan的绝缘子缺陷样本自动生成技术[J]. 电子测量技术, 2021, 44(17): 138-145.
[22]  Wang, Z., Simoncelli, E.P. and Bovik, A.C. (2003) Multiscale Structural Similarity for Image Quality Assessment. The 37th Asilomar Conference on Signals, Pacific Grove: Systems & Computers, 2, 1398-1402.
[23]  卓力, 张美娜, 王贯瑶, 等. 基于支持向量回归的无参考MS-SSIM视频质量评价模型[J]. 北京工业大学学报, 2018, 44(12): 1486-1493.
[24]  李培育, 张雅丽. 基于改进SRGAN模型的人脸图像超分辨率重建研究[J]. 计算机工程, 2023, 49(4): 199-205.
[25]  Chen, X., Zhao, H., Yang, D., et al. (2021) SA-SinGAN: Self-Attention for Single-Image Generation Adversarial Networks. Machine Vision and Applications, 32, 1-14.
https://doi.org/10.1007/s00138-021-01228-z
[26]  李晨曦, 李健. 基于GAN和U-Net的低光照图像增强算法[J]. 计算机系统应用, 2022, 31(5): 174-183.
[27]  王寓枫, 杨旻. 基于多边缘信息融合的图像修复模型[J]. 烟台大学学报(自然科学与工程版), 2023, 36(1): 12-16+27.
[28]  刘牧云, 卞春江, 陈红珍. 基于特征解耦的少样本遥感飞机图像增广算法[J/OL]. 计算机工程与应用: 1-11.
https://kns.cnki.net/kcms/detail/11.2127.TP.20230228.1105.018.html, 2023-03-13.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133