全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

“三生空间”视角下广东地区植被净初级生产力时空格局及驱动力研究
Study on Spatial-Temporal Pattern and Driving Forces of Net Primary Production of Vegetation in Guangdong from the Perspective of “Production-Living-Ecological Space”

DOI: 10.12677/GSER.2023.123042, PP. 449-462

Keywords: 植被NPP,三生空间,驱动机制,广东地区
Vegetal NPP
, “Production-Living-Ecological Space”, Driving Mechanism, Guangdong

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究广东地区植被NPP时空演变和驱动机制,对广东地区生态文明建设具有重要意义。本研究基于“三生空间”视角,采用CASA模型估算2010~2020年广东地区植被NPP,分析其时空演变特征,利用地理探测器对其空间分异驱动力进行研究。结果表明:1) 广东地区以生态空间为主导,2010~2020年间“三生空间”面积变化明显,生态空间面积增加,生产空间和生活空间面积减少。2)“三生空间”植被NPP均呈先增后减趋势,但总体植被NPP均有所增加。其中,生态空间植被NPP值最高,为992.91 gC?m?2?a?1,其次为生产空间,为771.96 gC?m?2?a?1;生活空间植被NPP值最低,为518.82 gC?m?2?a?1。3) NDVI是对植被NPP空间分异影响最大的因子,其次为土地利用因子,生态空间和生产空间气温、降水和太阳辐射因子对植被NPP空间分异的影响相当,在生活区的影响差异则比较明显。
It is important to study the spatial and temporal evolution of vegetal NPP and its driving mechanism for the construction of ecological civilization in Guangdong. Based on the perspective of “Production-Living-Ecological Space”, this study uses the CASA model to estimate the vegetal NPP in Guangdong from 2010 to 2020, analyzes its spatial and temporal evolution characteristics, and investigates its spatial differentiation driving force by using geographic probes. The results show that: 1) The ecological space is the dominant area in Guangdong, and the area of the “Production-Living-Ecological Space” changes significantly between 2010 and 2020, with the area of ecological space increasing and the area of production space and living space decreasing. 2) The vegetal NPP in the “Production-Living-Ecological Space” tends to increase first and then decrease, but the overall vegetal NPP increases. The highest NPP value was 992.91 gC?m?2?a?1 in ecological space, followed by 771.96 gC?m?2?a?1 in production space, and the lowest NPP value was 518.82 gC?m?2?a?1 in living space. 3) NDVI was the most influential factor on the spatial variation of vegetal NPP, followed by land use factor. The effects of temperature, precipitation and solar radiation on the spatial variation of vegetal NPP were comparable in ecological space and production space, and the differences were more obvious in living areas.

References

[1]  Ruimy, B. and Saugier, G.D. (1994) Methodology for the Estimation of Terrestrial Net Primary Production from Remotely Sensed Data. Journal of Geophysical Research: Atmospheres, 99, 5263-5283.
https://doi.org/10.1029/93JD03221
[2]  Christopher, B., Field, M.J., Behrenfeld, J.T. and Randerson, P.F. (1998) Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components. Science, 281, 237-240.
https://doi.org/10.1126/science.281.5374.237
[3]  侯英雨, 柳钦火, 延昊, 田国良. 我国陆地植被净初级生产力变化规律及其对气候的响应[J]. 应用生态学报, 2007(7): 1546-1553.
[4]  任正超, 朱华忠, 张德罡, 柳小妮. 俄罗斯布里亚特共和国植被NPP对气候变化的时空响应[J]. 自然资源学报, 2011, 26(5): 790-801.
[5]  石智宇, 王雅婷, 赵清, 张连蓬, 朱长明. 2001-2020年中国植被净初级生产力时空变化及其驱动机制分析[J]. 生态环境学报, 2022, 31(11): 2111-2123.
[6]  刘旻霞, 焦骄, 潘竟虎, 宋佳颖, 车应弟, 李俐蓉. 青海省植被净初级生产力(NPP)时空格局变化及其驱动因素[J]. 生态学报, 2020, 40(15): 5306-5317.
[7]  柯金虎, 朴世龙, 方精云. 长江流域植被净第一性生产力及其时空格局研究[J]. 植物生态学报, 2003(6): 764-770.
[8]  刘杰, 汲玉河, 周广胜, 周莉, 吕晓敏, 周梦子. 2000-2020年青藏高原植被净初级生产力时空变化及其气候驱动作用[J]. 应用生态学报, 2022, 33(6): 1533-1538.
[9]  Zhang, M.L., et al. (2016) Estimating Net Primary Production of Natural Grassland and Its Spatial-Temporal Distribution in China. Science of the Total Environment, 553, 184-195.
https://doi.org/10.1016/j.scitotenv.2016.02.106
[10]  闫伟兄, 陈素华, 乌兰巴特尔, 魏玉蓉, 杨丽萍. 内蒙古典型草原区植被NPP对气候变化的响应[J]. 自然资源学报, 2009, 24(9): 1625-1634.
[11]  Potter, C.S., Randerson, J.T., Field, C.B., Matson, P.A., Vitousek, P.M., Mooney, H.A. and Klooster, S.A. (1993) Terrestrial Ecosystem Production: A Process Model Based on Global Satellite and Surface Data. Global Biogeochemical Cycles, 7, 811-841.
https://doi.org/10.1029/93GB02725
[12]  Field, C.B., Randerson, J.T. and Malmstrm, C.M. (1995) Global Net Primary Production: Combining Ecology and Remote Sensing. Remote Sensing of Environment, 51, 74-88.
https://doi.org/10.1016/0034-4257(94)00066-V
[13]  崔林丽, 史军, 肖风劲. 气候要素及El Nino/La Nina事件对中国陆地NPP变化的影响[J]. 地理学报, 2018, 73(1): 54-66.
[14]  朴世龙, 方精云, 郭庆华. 利用CASA模型估算我国植被净第一性生产力[J]. 植物生态学报, 2001(5): 603-608+644.
[15]  高清竹, 万运帆, 李玉娥, 林而达, 杨凯, 江村旺扎, 王宝山, 李文福. 基于CASA模型的藏北地区草地植被净第一性生产力及其时空格局[J]. 应用生态学报, 2007(11): 2526-2532.
[16]  周妍妍, 朱敏翔, 郭晓娟, 李凯, 苗俊霞, 郭建军, 徐晓锋, 岳东霞. 疏勒河流域气候变化和人类活动对植被NPP的相对影响评价[J]. 生态学报, 2019, 39(14): 5127-5137.
[17]  朱士华, 艳燕, 邵华, 李超凡. 1980-2014年中亚地区植被净初级生产力对气候和CO2变化的响应[J]. 自然资源学报, 2017, 32(11): 1844-1856.
[18]  李登科, 王钊. 气候变化和人类活动对陕西省植被NPP影响的定量分析[J]. 生态环境学报, 2022, 31(6): 1071-1079.
[19]  梁大林, 唐海萍. 青藏高原两种高寒草地植被变化及其水温驱动因素分析[J]. 生态学报, 2022, 42(1): 287-300.
[20]  李金珂, 杨玉婷, 张会茹, 黄铝文, 高义民. 秦巴山区近15年植被NPP时空演变特征及自然与人为因子解析[J]. 生态学报, 2019, 39(22): 8504-8515.
[21]  Azhdari, Z., et al. (2020) Impact of Climate Change on Net Primary Production (NPP) in South Iran. Environmental Monitoring and Assessment, 192, Article No. 409.
https://doi.org/10.1007/s10661-020-08389-w
[22]  王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
[23]  郭志华, 彭少麟, 王伯荪. 基于GIS和RS的广东陆地植被生产力及其时空格局[J]. 生态学报, 2001(9): 1444-1449+1569.
[24]  刘海桂, 唐旭利, 周国逸, 刘曙光. 1981~2000年广东省净初级生产力的时空格局[J]. 生态学报, 2007(10): 4065-4074.
[25]  罗艳, 王春林. 基于MODIS NDVI的广东省陆地生态系统净初级生产力估算[J]. 生态环境学报, 2009, 18(4): 1467-1471.
[26]  姜春, 吴志峰, 程炯, 钱乐祥. 广东省土地覆盖变化对植被净初级生产力的影响分析[J]. 自然资源学报, 2016, 31(6): 961-972.
[27]  李艳萍, 张愉翊, 陈俊杰. 台湾农会“三生”功能及对“美丽乡村”建设的启示[J]. 山东科技大学学报(社会科学版), 2018, 20(2): 110-116.
[28]  黄金川, 林浩曦, 漆潇潇. 面向国土空间优化的三生空间研究进展[J]. 地理科学进展, 2017, 36(3): 378-391.
[29]  龚亚男. 广东省“三生空间”用地转型的时空演变及其生态环境效应[D]: [硕士学位论文]. 广州: 华南理工大学, 2020.
[30]  朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算[J]. 植物生态学报, 2007(3): 413-424.
[31]  Pei, F.S., Li, X., Liu, X.P., Wang, S.J. and He, Z.J. (2013) Assessing the Differences in Net Primary Productivity between Pre- and Post-Urban Land Development in China. Agricultural and Forest Meteorology, 171-172, 174-186.
https://doi.org/10.1016/j.agrformet.2012.12.003

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133