|
肠道微生物与动脉粥样硬化性脑卒中的研究进展
|
Abstract:
肠道微生物群是人体内最大的微生物库,在神经发育和衰老以及缺血性脑卒中等脑部疾病中发挥着重要作用。肠道细菌产生神经活性化合物可以调节神经元功能,从而影响缺血性脑卒中后的行为。此外,肠道微生物会影响宿主代谢和免疫状态,进而影响缺血性大脑的神经元网络。在这里,我们讨论了动物和人类研究在缺血性脑卒中中沿肠–脑轴双向交流的结果。
The gut microbiota is the largest reservoir of microorganisms in the body and plays an important role in neurodevelopment and aging as well as in brain diseases such as ischemic stroke. The pro-duction of neuroactive compounds by gut bacteria can modulate neuronal function and thus influ-ence behavior after ischemic stroke. In addition, gut microbes affect host metabolism and immune status, which in turn influence neuronal networks in the ischemic brain. Here, we discuss the re-sults of animal and human studies on bidirectional communication along the gut-brain axis in is-chemic stroke.
[1] | Chen, Y., Fu, A. and Ip, N.Y. (2019) Synaptic Dysfunction in Alzheimer’s Disease: Mechanisms and Therapeutic Strat-egies. Pharmacology & Therapeutics, 195, 186-198. https://doi.org/10.1016/j.pharmthera.2018.11.006 |
[2] | Parr, E., Ferdinand, P. and Roffe, C. (2017) Management of Acute Stroke in the Older Person. Geriatrics, 2, Article No. 27. https://doi.org/10.3390/geriatrics2030027 |
[3] | Radenovic, L., Nenadic, M., Ulamek-Koziol, M., et al. (2020) Het-erogeneity in Brain Distribution of Activated Microglia and Astrocytes in a Rat Ischemic Model of Alzheimer’s Disease after 2 Years of Survival. Aging, 12, 12251-12267. https://doi.org/10.18632/aging.103411 |
[4] | Pluta, R., U?amek-Kozio?, M., Kocki, J., et al. (2020) Expression of the Tau Protein and Amyloid Protein Precursor Processing Genes in the CA3 Area of the Hippocampus in the Ischemic Model of Alzheimer’s Disease in the Rat. Molecular Neu-robiology, 57, 1281-1290. https://doi.org/10.1007/s12035-019-01799-z |
[5] | U?amek-Kozio?, M., Czuczwar, S.J., Januszewski, S. and Pluta, R. (2020) Proteomic and Genomic Changes in Tau Protein, Which Are Associated with Alz-heimer’s Disease after Ischemia-Reperfusion Brain Injury. International Journal of Molecular Sciences, 21, Article No. 892. https://doi.org/10.3390/ijms21030892 |
[6] | Chamorro, á., Urra, X. and Planas, A.M. (2007) Infection after Acute Ischemic Stroke: A Manifestation of Brain-Induced Immunodepression. Stroke, 38, 1097-1103. https://doi.org/10.1161/01.STR.0000258346.68966.9d |
[7] | Li, N., Wang, X., Sun, C., et al. (2019) Change of In-testinal Microbiota in Cerebral Ischemic Stroke Patients. BMC Microbiology, 19, Article No. 191. https://doi.org/10.1186/s12866-019-1552-1 |
[8] | Murray, C.J.L. and Lopez, A.D. (2013) Measuring the Global Burden of Disease. New England Journal of Medicine, 369, 448-457. https://doi.org/10.1056/NEJMra1201534 |
[9] | Rasoul, M., Rokhsareh, M., Mohammad, S.M., Sajad, K. and Ah-madreza, M. (2019) The Human Immune System against Staphylococcus epidermidis. Critical Reviews? in Immunology, 39, 151-163.
https://doi.org/10.1615/CritRevImmunol.2019031282 |
[10] | Takiishi, T., Fenero, C.I.M.F. and Camara, N.O.S. (2017) Intestinal Barrier and Gut Microbiota: Shaping Our Immune Responses throughout Life. Tissue Barriers, 5, e1373208. https://doi.org/10.1080/21688370.2017.1373208 |
[11] | Holscher, H.D. (2017) Dietary Fiber and Prebi-otics and the Gastrointestinal Microbiota. Gut Microbes, 8, 172-184.
https://doi.org/10.1080/19490976.2017.1290756 |
[12] | Venegas, D.P., De la Fuente, M.K., Landskron, G., et al. (2019) Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for In-flammatory Bowel Diseases. Frontiers in Immunology, 10, Article 277. https://doi.org/10.3389/fimmu.2019.01486 |
[13] | Shultz, S.R., Macfabe, D.F., Martin, S., et al. (2009) Intracerebro-ventricular Injections of the Enteric Bacterial Metabolic Product Propionic Acid Impair Cognition and Sensorimotor Abil-ity in the Long-Evans Rat: Further Development of a Rodent Model of Autism. Behavioural Brain Research, 200, 33-41.
https://doi.org/10.1016/j.bbr.2008.12.023 |
[14] | Maurer, M.H., Canis, M., Kuschinsky, W. and Duelli, R. (2004) Correlation between Local Monocarboxylate Transporter 1 (MCT1) and Glucose Transporter 1 (GLUT1) Densities in the Adult Rat Brain. Neuroscience Letters, 355, 105-108. https://doi.org/10.1016/j.neulet.2003.10.056 |
[15] | MacFabe, D.F., Cain, D.P., Rodriguez-Capote, K., et al. (2007) Neurobiological Effects of Intraventricular Propionic Acid in Rats: Possible Role of Short Chain Fatty Acids on the Pathogenesis and Characteristics of Autism Spectrum Disorders. Be-havioural Brain Research, 176, 149-169. https://doi.org/10.1016/j.bbr.2006.07.025 |
[16] | Bonnet, U., Bingmann, D. and Wiemann, M. (2000) Intracellular pH Modulates Spontaneous and Epileptiform Bioelectric Activity of Hippocampal CA3-Neurones. European Neuropsychopharmacology, 10, 97-103.
https://doi.org/10.1016/S0924-977X(99)00063-2 |
[17] | Cannizzaro, C., Monastero, R., Vacca, M., et al. (2003) [3H]-DA Release Evoked by Low pH Medium and Internal H+ Accumulation in Rat Hypothalamic Synaptosomes: In-volvement of Calcium Ions. Neurochemistry International, 43, 9-17. https://doi.org/10.1016/S0197-0186(02)00211-5 |
[18] | Nakamura, Y.K., Janowitz, C., Metea, C., et al. (2017) Short Chain Fatty Acids Ameliorate Immune-Mediated Uveitis Partially by Altering Migration of Lymphocytes from the Intes-tine. Scientific Reports, 7, Article No. 11745.
https://doi.org/10.1038/s41598-017-12163-3 |
[19] | Sato, J., Kanazawa, A., Ikeda, F., et al. (2014) Gut Dysbiosis and Detection of “Live Gut Bacteria” in Blood of Japanese Patients with Type 2 Diabetes. Diabetes Care, 37, 2343-2350. https://doi.org/10.2337/dc13-2817 |
[20] | Li, J., Zhao, F., Wang, Y., et al. (2017) Gut Microbiota Dysbiosis Contrib-utes to the Development of Hypertension. Microbiome, 5, Article No. 14. https://doi.org/10.1186/s40168-016-0222-x |
[21] | Yin, J., Liao, S.-X., He, Y., et al. (2015) Dysbiosis of Gut Mi-crobiota with Reduced Trimethylamine-N-Oxide Level in Patients with Large-Artery Atherosclerotic Stroke or Transient Ischemic Attack. Journal of the American Heart Association, 4, e002699. https://doi.org/10.1161/JAHA.115.002699 |
[22] | Zeng, X., Gao, X., Peng, Y., et al. (2019) Higher Risk of Stroke Is Correlated with Increased Opportunistic Pathogen Load and Reduced Levels of Butyrate-Producing Bacteria in the Gut. Frontiers in Cellular and Infection Microbiology, 9, Article 4. https://doi.org/10.3389/fcimb.2019.00004 |
[23] | Litvak, Y., Byndloss, M.X., Tsolis, R.M. and B?umler, A.J. (2017) Dysbiotic Proteobacteria Expansion: A Microbial Signature of Epithelial Dysfunction. Current Opinion in Microbiology, 39, 1-6.
https://doi.org/10.1016/j.mib.2017.07.003 |
[24] | Winter, S.E., Winter, M.G., Xavier, M.N., et al. (2013) Host-Derived Nitrate Boosts Growth of E. coli in the Inflamed Gut. Science, 339, 708-711. https://doi.org/10.1126/science.1232467 |
[25] | Bourassa, M.W., Alim, I., Bultman, S.J. and Ratan, R.R. (2016) Bu-tyrate, Neuroepigenetics and the Gut Microbiome: Can a High Fiber Diet Improve Brain Health? Neuroscience Letters, 625, 56-63.
https://doi.org/10.1016/j.neulet.2016.02.009 |
[26] | Li, Z., Yi, C.-X., Katiraei, S., et al. (2018) Butyrate Reduces Ap-petite and Activates Brown Adipose Tissue via the Gut-Brain Neural Circuit. Gut, 67, 1269-1279. https://doi.org/10.1136/gutjnl-2017-314050 |
[27] | Byndloss, M.X., Olsan, E.E., Rivera-Chavez, F., et al. (2017) Microbiota-Activated Ppar-γ Signaling Inhibits Dysbiotic Enterobacteriaceae Expansion. Science, 357, 570-575. https://doi.org/10.1126/science.aam9949 |
[28] | Singh, V., Roth, S., Llovera, G., et al. (2016) Microbiota Dysbiosis Controls the Neuroinflammatory Response after Stroke. Journal of Neuroscience, 36, 7428-7440. https://doi.org/10.1523/JNEUROSCI.1114-16.2016 |
[29] | Chen, Y., Liang, J., Ouyang, F., et al. (2019) Persistence of Gut Microbiota Dysbiosis and Chronic Systemic Inflammation after Cerebral Infarction in Cynomolgus Monkeys. Frontiers in Neurology, 10, Article 661.
https://doi.org/10.3389/fneur.2019.00661 |
[30] | Gophna, U., Konikoff, T. and Nielsen, H.B. (2017) Oscillospira and Related Bacteria—From Metagenomic Species to Metabolic Features. Environmental Microbiology, 19, 835-841. https://doi.org/10.1111/1462-2920.13658 |
[31] | Chesnokova, V., Pechnick, R.N. and Wawrowsky, K. (2016) Chronic Peripheral Inflammation, Hippocampal Neurogenesis, and Behavior. Brain, Behavior, and Immunity, 58, 1-8. https://doi.org/10.1016/j.bbi.2016.01.017 |
[32] | Liu, Z., Lu, W., Gao, L., et al. (2022) Protocol of End-PSCI Trial: A Multicenter, Randomized Controlled Trial to Evaluate the Effects of DL-3-N-Butylphthalide on Delayed-Onset Post Stroke Cognitive Impairment. BMC Neurology, 22, Article No. 435. https://doi.org/10.1186/s12883-022-02957-y |
[33] | del Carmen, S., Miyoshi, A., Azevedo, V., de LeBlanc, A.M. and LeBlanc, J.G. (2015) Evaluation of a Streptococcus thermophilus Strain with Innate Anti-Inflammatory Properties as a Vehicle for IL-10 cDNA Delivery in an Acute Colitis Model. Cytokine, 73, 177-183. https://doi.org/10.1016/j.cyto.2015.02.020 |
[34] | Dénes, á., Ferenczi, S. and Kovács, K.J. (2011) Systemic Inflam-matory Challenges Compromise Survival after Experimental Stroke via Augmenting Brain Inflammation, Blood-Brain Barrier Damage and Brain Oedema Independently of Infarct Size. Journal of Neuroinflammation, 8, Article No. 164. https://doi.org/10.1186/1742-2094-8-164 |