|
夜视驾驶中地形障碍深度距离知觉的研究综述
|
Abstract:
随着夜视技术的发展,夜间驾驶中对地形障碍的距离知觉研究逐渐增多。研究者们致力于帮助驾驶员对不同地形障碍进行更准确的探测,降低地形障碍造成的潜在事故风险、提升驾驶的安全性。本文通过对夜视驾驶中地形障碍深度距离知觉地研究现状、研究范式进行整理,探讨个体在夜视设备辅助条件下对地形障碍深度知觉的准确性与其影响因素现状。基于研究现状提出研究展望,为未来夜视驾驶中地形障碍的深度知觉领域的研究提供参考。
With the development of night vision technology, more and more researches have been conducted on distance perception of terrain obstacles during night driving. Researchers aim to help drivers more accurately detect different terrain obstacles, reduce the potential risk of accidents, and improve driving safety. By sorting out the research status and paradigm of depth perception of terrain obstacles in night vision driving, this paper discusses the accuracy and optimization status of depth perception of terrain obstacles under the assistance of night vision equipment. Based on the current research situation, the research prospect is proposed to provide a reference for the future research on depth perception of terrain obstacles in night vision driving.
[1] | 蔡滨, 曹巍, 李斐如, 付康(2015). 军用车辆夜间驾驶装备发展现状与展望. 四川兵工学报, 36(6), 29-32. |
[2] | 胡迈(2015). 微光夜视环境中自然微光环境模拟. 长春理工大学学报(自然科学版), 38(1), 29-33. |
[3] | 史训豪(2019). 夜视仪在单兵观瞄系统中的应用. 科技风, (28), 18-19. |
[4] | 熊端琴, 郭小朝(2005). 航空夜视镜人机工效学问题研究进展. 中华航空航天医学杂志, 16(4), 312-315. |
[5] | 许为(1991). 航空夜视镜的人机工效学问题. 国际航空, (12), 52-53, 42. |
[6] | 赵晓枫, 刘长青, 蔡伟, 乔滨, 周亮(2017). 夜视车载平显视场人机工效分析. 科学技术与工程, 17(35), 23-31. |
[7] | Baker, R. G. V. (1999). On the Quantum Mechanics of Optic Flow and Its Application to Driving in Uncertain Environments. Transportation Research Part F: Traffic Psychology and Behaviour, 2, 27-53.
https://doi.org/10.1016/S1369-8478(99)00005-4 |
[8] | Bateman, S., Doucette, A., Xiao, R., Gutwin, C., & Cockburn, A. (2011). Effects of View, Input Device, and Track Width on Video Game Driving. In Proceedings of Graphics Interface 2011. Association for Computing Machinery. |
[9] | Best, P. S., Collins, D. J., Piccione, D., & Ferrett, D. (1998). Evaluating Thermal and Image Intensification Night Vision Devices for the Ground Environment: Human Factors and Usability Issues. In Proceedings of the IEEE 1998 National Aerospace and Electronics Conference. NAECON 1998. Celebrating 50 Years (Cat. No.98CH36185). IEEE.
https://doi.org/10.1109/NAECON.1998.710130 |
[10] | Brickner, M. S. (1989). Helicopter Flights with Night-Vision Goggles: Human Factors Aspects. National Aeronautics and Space Administration (NASA). |
[11] | Chang, T., Legowik, S., & Abrams, M. N. (1999). Concealment and Obstacle Detection for Autonomous Driving. In The International Association of Science & Technology for Development—Robotics & Applications99 Conference. IASTED/Acta Press. |
[12] | Cronin, T. W., Johnsen, S., Marshall, N. J., & Warrant, E. J. (2014). Visual Ecology. Princeton University Press.
https://doi.org/10.23943/princeton/9780691151847.001.0001 |
[13] | DeLucia, P. R., & Task, H. L. (1995). Depth and Collision Judgment Using Night Vision Goggles. The International Journal of Aviation Psychology, 5, 371-386. https://doi.org/10.1207/s15327108ijap0504_3 |
[14] | Dima, C. S., Vandapel, N., & Hebert, M. (2004). Classifier Fusion for Outdoor Obstacle Detection. In IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004. IEEE.
https://doi.org/10.1109/ROBOT.2004.1307225 |
[15] | Flannagan, M. J., & Mefford, M. L. (2017). Distance Perception with a Camera-Based Rear Vision System in Actual Driving. In Driving Assessment 2005: Proceedings of the 3rd International Driving Symposium on Human Factors in Driver Assessment, Training, and Vehicle Design). The University of Michigan Transportation Research Institute.
https://doi.org/10.17077/drivingassessment.1143 |
[16] | Hadani, I. (1991). Corneal Lens Goggles and Visual Space Perception. Applied Optics, 30, 4136-4147.
https://doi.org/10.1364/AO.30.004136 |
[17] | Karunasekera, H., Zhang, H., Xi, T., & Wang, H. (2017). Stereo Vision Based Negative Obstacle Detection. In 2017 13th IEEE International Conference on Control & Automation (ICCA). IEEE.
https://doi.org/10.1109/ICCA.2017.8003168 |
[18] | Loomis, J. M., Da Silva, J. A., Fujita, N., & Fukusima, S. S. (1992). Visual Space Perception and Visually Directed Action. Journal of Experimental Psychology: Human Perception and Performance, 18, 906-921.
https://doi.org/10.1037//0096-1523.18.4.906 |
[19] | Manton, A. G. (2000). Night Vision Goggles, Human Factors Aspects—A Questionnaire Survey of Helicopter Aircrew. BMJ Military Health, 146, 22-27. https://doi.org/10.1136/jramc-146-01-05 |
[20] | Matthies, L., & Rankin, A. (2003). Negative obstacle Detection by Thermal Signature. In Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453). IEEE.
https://doi.org/10.1109/IROS.2003.1250744 |
[21] | Morawiec, G., Niall, K. K., & Scullion, K. (2008). Distance Estimation and Simulation Training. In Tenth International Conference on Computer Modeling and Simulation (uksim 2008). IEEE. https://doi.org/10.1109/UKSIM.2008.66 |
[22] | Napieralski, P. E., Altenhoff, B. M., Bertrand, J. W., Long, L. O., Babu, S. V., Pagano, C. C., Kern, J., & Davis, T. A. (2011). Near-Field Distance Perception in Real and Virtual Environments Using Both Verbal and Action Responses. ACM Transactions on Applied Perception, 8, 1-19. https://doi.org/10.1145/2010325.2010328 |
[23] | Niall, K. K., Reising, J. D., & Martin, E. L. (1999). Distance Estimation with Night Vision Goggles: A Little Feedback Goes a Long Way. Human Factors: The Journal of the Human Factors and Ergonomics Society, 41, 495-506.
https://doi.org/10.1518/001872099779611012 |
[24] | Norman, J. F., Dukes, J. M., Shapiro, H. K., & Peterson, A. E. (2020). The Visual Perception of Large-Scale Distances Outdoors. Perception, 49, 968-977. https://doi.org/10.1177/0301006620948503 |
[25] | Ooi, T. L., & He, Z. J. (2007). A Distance Judgment Function Based on Space Perception Mechanisms: Revisiting Gilinsky’s (1951) Equation. Psychological Review, 114, 441-454. https://doi.org/10.1037/0033-295X.114.2.441 |
[26] | Parush, A., Gauthier, M. S., Arseneau, L., & Tang, D. (2011). The Human Factors of Night Vision Goggles. Reviews of Human Factors and Ergonomics, 7, 238-279. https://doi.org/10.1177/1557234X11410392 |
[27] | Pazuchanics, L. S. (2006). The Effects of Camera Perspective and Field of View on Performance in Teleoperated Navigation. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 50, 1528-1532.
https://doi.org/10.1177/154193120605001603 |
[28] | Piccione, D., & Ferrett, D. A. (1998). Driving Miss Bradley: Performance Measurement to Support Thermal Driving. In J. G. Verly (Ed.), Enhanced and Synthetic Vision 1998 (Vol. 3364). SPIE. https://doi.org/10.1117/12.317471 |
[29] | Rankin, A. L., Huertas, A., & Matthies, L. H. (2007). Night-Time Negative Obstacle Detection for off-Road Autonomous Navigation. In G. R. Gerhart, D. W. Gage, & C. M. Shoemaker (Eds.), Unmanned Systems Technology IX (Vol. 6561).
SPIE. https://doi.org/10.1117/12.720513 |
[30] | Rankin, A., Huertas, A., Matthies, L., Bajracharya, M., Assad, C., Brennan, S. et al. (2011). Unmanned Ground Vehicle Perception Using Thermal Infrared Cameras. In D. W. Gage, C. M. Shoemaker, R. E. Karlsen, & G. R. Gerhart (Eds.), Unmanned Systems Technology XIII (Vol. 8045). SPIE. https://doi.org/10.1117/12.884349 |
[31] | Reising, J. D., & Martin, E. L. (1995). Distance Estimation Training with Night Vision Goggles under Low Illumination. Armstrong Laboratory. |
[32] | Ruffner, J., Piccione, D., & Woodward, K. (1997). Development of a Night Driving Training Aid Concept. U.S. Army Simulation, Training and Instrumentation Command. |
[33] | Sinai, M. J., Ooi, T. L., & He, Z. J. (1998). Terrain Influences the Accurate Judgement of Distance. Nature, 395, 497-500.
https://doi.org/10.1038/26747 |
[34] | Suh, W., Park, P. Y.-J., Park, C. H., & Chon, K. S. (2006). Relationship between Speed, Lateral Placement, and Drivers’ Eye Movement at Two-Lane Rural Highways. Journal of Transportation Engineering, 132, 649-653.
https://doi.org/10.1061/(ASCE)0733-947X(2006)132:8(649) |
[35] | Toet, A., Jansen, S. E., & Delleman, N. J. (2008). Effects of Field-of-View Restriction on Manoeuvring in a 3-D Environment. Ergonomics, 51, 385-394. https://doi.org/10.1080/00140130701628329 |