The objective of this work is to obtain a composite of clay-cement-metakaolin having good mechanical properties and geotechnical. To do this, a lateritic clay from Burkina Faso referenced ALK was characterized by various methods (X-ray diffraction, infrared spectrometry, thermal analysis and Inductively Coupled Plasma, Atomic Emission Spectrometry) in order to be used as a base course after adding cement and metakaolin. The results of the mineralogical characterization of this clay showed that it is composed of kaolinite (65.7 wt.%), quartz (19.3 wt.%) and goethite (10.8 wt.%). The geotechnical tests carried out showed that ALK is moderately plastic with a plasticity index Ip = 22%. The optimum moisture content and the maximum dry density are respectively 15.9% and 1.76 g∙cm-3. Simple compressive strength and splitting tensile strength are Rc = 1.59 MPa and ft = 0.149 MPa respectively. The California Bearing Ratio (CBR) index at 95% is 40% and above the minimum value of 30% shows that ALK can be used as a sub-base course in road construction. The addition of cement and metakaolin in various proportions improved the CBR index and the mechanical strength of the composites produced. This improvement is due to the formation of hydrated calcium silicate (CSH) resulting from the pozzolanic reaction between the portlandite of the cement and the amorphous silica of the metakaolin. Thus the 2 wt.% metakaolin and 6 wt.% cement formulation with a 95%CBR index of 81% is suitable for the development of a base course in road construction.
References
[1]
Millogo, Y., Hajjaji, M., Ouedraogo, R. and Gomina, M. (2008) Cement-Lateritic Gravels Mixtures: Microstructure, and Strength Characteristics. Construction and Building Materials, 22, 2078-2086. https://doi.org/10.1016/j.conbuildmat.2007.07.019
[2]
SouleyIssiakou, M. (2016) Caractérisation et valorisation des matérieux latéritiques utilisés en construction routière au Niger. Master’s Thèse, Université de Bordeaux, Bordeaux.
[3]
Attoh-Okine, N.O. (1995) Lime Treatment of Laterite Soils and Gravels Revisited. Construction and Building Materials, 9, 283-287. https://doi.org/10.1016/0950-0618(95)00030-J
[4]
Autret, P. (1986) Latérites et graveleux lateéritiques. Laboratoire Central des Ponts et Chaussées France.
[5]
Gartner, E. (2004) Industrially Interesting Approches to “Low-CO2” Cements. Cement and Concrete Research, 34, 1489-1498. https://doi.org/10.1016/j.cemconres.2004.01.021
[6]
Ouedraogo, M., Sawadogo, M., Sanou, I., Barro, M., Nassio, S., Seynou, M. and Zerbo, L. (2022) Characterization of Sugar Cane Bagasse Ash from Burkina Faso for Cleaner Cement Production: Influence of Calcination Temperature and Duration. Result in Materials, 14, Article ID: 100275. https://doi.org/10.1016/j.rinma.2022.100275
[7]
Oriol, M. and Pera, J. (1995) Pozzolanic Activity of Metakaolin Binder under Microware Treatment. Cement and Concretes Research, 25, 265-270. https://doi.org/10.1016/0008-8846(95)00007-0
[8]
Bich, C., Ambroise, J. and Péra, J. (2009) Influence of Degree of Deshydroxylation on the Pozzolanic Activity of Metakaolin. Applied Clay Science, 44, 194-200. https://doi.org/10.1016/j.clay.2009.01.014
[9]
Dao, K., Ouedraogo, M., Millogo, Y., Aubert, J.E. and Gomina, M. (2018) Thermal, Hydric and Mechanical Behaviours of Adobes Stabilized with Cement. Construction and Building Materials, 158, 84-96. https://doi.org/10.1016/j.conbuildmat.2017.10.001
[10]
Seynou, M., Millogo, Y., Zerbo, L., Sanou, I., Ganon, F., Ouedraogo, R. and Kaboré, K. (2016) Production and Characterization of Pozzolan with Raw Clay for Burkina Faso. Journal of Minerals and Materials Characterization and Engineering, 4, 195-209. https://doi.org/10.4236/jmmce.2016.43018
[11]
ASTM International (2008) ASTM Standard, C618-22: Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. Annual Book of ASTM standards, West Conshohocken.
[12]
AFNOR (1999) NF P94-093. Détermination des références de compactage d’un matériau.
[13]
AFNOR (1999) NF P98-231-1. Comportement au compactage des matériaux autres que traités aux liants hydrocarbonés: Partie 1, Essai Proctor modifié adapté aux graves et sables utilisés en assises de chaussées.
[14]
AFNOR (1978) NF P18-560. Analyse granulométrique par tamisage.
[15]
AFNOR (1993) NF P94-051. Détermination des limites d’Atterberg.
[16]
AFNOR (1993) NF P94-068. Mesure de la quantité et de l’activité de la fraction argileuse. Détermination de la valeur de bleu de méthylène d’un sol par l’essai à la tache.
[17]
AFNOR (1992) NF P11-300. Exécution des terrassements Classification des matériaux utilisablesdans la construction des remblaiset des couches de formed’infrastructures routières.
[18]
AFNOR (1981) NF P18-406. Bétons—Essai de compression.
[19]
AFNOR (1981) NF P18-408. Bétons—Essai de fendage.
[20]
Elfil, H., Srasra, E. and Dogguy, M. (1995) Caractérisation physico-chimique de certaines argiles utilisées dans l’industrie céramique. Journal of thermal Analysis, 44, 663-683. https://doi.org/10.1007/BF02636285
[21]
Qtaitat, M.A. and Al-Trawneh, I.N. (2005) Characterization of Kaolinite of the Baten El-Ghoul Region/South Jordan by Infrared Spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61, 1519-1523. https://doi.org/10.1016/j.saa.2004.11.008
[22]
Konan, L.K., Seil, J., Andji, J.Y.Y., Soro, N.S., Oyetola, S., Toure, A.A. and Kra, G. (2001) Etude de quelques échantillons d’argiles du site de Sekoudé (Côte d’Ivoire). Journal de la Société Ouest-Africaine de Chimie, 11, 181-196.
[23]
Ouédraogo, M., Dao, K., Millogo, Y., Aubert, J.E., Messan, A., Seynou, M., Zerbo, L. and Gomina, M. (2019) Physical, Thermal and Mechanical Properties of Adobes Stabilized with Fonio (Digitaria exils) Straw. Journal of Building Engineering, 23, 250-258. https://doi.org/10.1016/j.jobe.2019.02.005
[24]
Yvon, J., Garin, P., Delon, J.F. and Cases, J.M. (1982) Valorisation des argiles kaolinitiques des Charentes dans le caoutchouc naturel. Bulletin de Minéralogie, 10, 431-437. https://doi.org/10.3406/bulmi.1982.7565
[25]
Alliprandi, G. (1979) Matériaux Réfractaires et Céramiques Techniques, Eléments de Céramurgie et de Technologie. Septima, Paris, 237-250.
[26]
Millogo, Y., Traore, K., Ouedraogo, R., Kabore, K., Blanchart, P. and Thoassin, J.H. (2008) Geotechnical, Mechanical, Chemical and Mineralogical Characterization of a Lateritic Gravels of Sapouy (Burkina Faso) Used in Road Construction. Construction and Building Materials, 22, 70-76. https://doi.org/10.1016/j.conbuildmat.2006.07.014
[27]
CEBTP (1984) Guide pratique du dimensionnement des routes pour les pays tropicaux.
[28]
Messou, M. (1980) Comportement mécanique d’une couche de base en graveleuxlatéritiques améliorés au ciment: Cas des routes en Côte d’Ivoire. Master’s Thèse, Ecole Nationale des Ponts et Chaussées, Paris.
[29]
Millogo, Y., Morel, J.C., Traore, K. and Ouedraogo, R. (2012) Microstructure, Geotechnical and Mechanical Characteristics of Quicklime-Lateritic Gravels Mixtures Used in Road Construction. Construction and Building Materials, 26, 663-669. https://doi.org/10.1016/j.conbuildmat.2011.06.069
[30]
Dutta, D.K., Bordoloi, D. and Prakash, C. (1995) Hydratation of Portland Cement Clinker in the Presence of Carbonaceous Materials. Cement and Concrete Research, 25, 1095-1102. https://doi.org/10.1016/0008-8846(95)00104-K
[31]
Dias, C.M.R., Cincotto, M.A., Savastano, J.H. and John, V.M. (2008) Long-Term Aging of Fibercement Corrugated Sheets—The Effect of Carbonation, Leaching and Acid Rain. Cement and Concrete Composites, 21, 255-265. https://doi.org/10.1016/j.cemconcomp.2007.11.001
[32]
Rojas, M.F. and Cabrera, J. (2002) The Effect of Temperature on the Hydration Rate and Stability of Hydration Phases of Metakaolin-Lime-Water Systems. Cement and Concrete Research, 32, 133-138. https://doi.org/10.1016/S0008-8846(01)00642-1
[33]
Osula, D. (1996) A Comparative Evaluation of Cement and Lime Modification of Laterite. Engineering Geology, 42, 71-81. https://doi.org/10.1016/0013-7952(95)00067-4
[34]
Sanou, I., Seynou, M., Zerbo, L. and Ouedraogo, R. (2019) Mineralogy, Physical and Mechanical Properties of Adobes Stabilized with Cement and Rice Husk Ash. Science Journal of Chemistry, 7, 1-10. https://doi.org/10.11648/j.sjc.20190701.11
[35]
Frias, M. and Cabrera, J. (2001) Influence of MK on the Reaction Kinetics in MK/Lime and MK-Blended Cement Systems at 20˚C. Cement and Concrete Research, 31, 519-527. https://doi.org/10.1016/S0008-8846(00)00465-8
[36]
Akpokodje, E.G. (1985) The Stabilization of Some Arid Zone Soils with Cement and Lime. Quarterly Journal of Engineering Geology, 18, 173-180. https://doi.org/10.1144/GSL.QJEG.1985.018.02.06
[37]
Bahar, R., Benazzoug, M. and Kenai, S. (2004) Performance of Compacted Cement-Stabilised Soil. Cement and Concrete Composites, 26, 811-820. https://doi.org/10.1016/j.cemconcomp.2004.01.003
[38]
Basha, E., Hashim, R., Mahmud, H. and Muntohar, A. (2005) Stabilization of Residual Soil with Rice Husk Ash and Cement. Construction and Building Materials, 19, 448-453. https://doi.org/10.1016/j.conbuildmat.2004.08.001
[39]
Kolias, S., Kasselouri-Rigopoulou, V. and Karahalios, A. (2005) Stabilization of Clayey Soils with High Calcium Fly as Hand Cement. Cement and Concrete Composites, 27, 301-313. https://doi.org/10.1016/j.cemconcomp.2004.02.019