We propose a theoretical model to describe external-cavity distributed feedback semiconductor lasers and investigate the impact of the number of external feedback points on linewidth and side-mode suppression ratio through numerical simulation. The simulation results demonstrate that the linewidth of external-cavity semiconductor lasers can be reduced by increasing the external cavity length and feedback ratio, and adding more external feedback points can further narrow the linewidth and enhance the side mode suppression ratio. This research provides insight into the external cavity distributed feedback mechanism and can guide the design of high-performance external cavity semiconductor lasers.
References
[1]
Ding, K., Ma, Y., Wei, L., Li, X., Shi, J., Li, Z., Qu, Y., Li, L., Qiao, Z. and Liu, G. (2022) Research on Narrow Linewidth External Cavity Semiconductor Lasers. Crystals, 12, 956. https://doi.org/10.3390/cryst12070956
[2]
Fischer, A., Yousefi, M., Lenstra, D., Carter, M.W. and Vemuri, G. (2004) Experimental and Theoretical Study of Semiconductor Laser Dynamics due to Filtered Optical Feedback IEEE Journal of Selected Topics in Quantum Electronics, 10, 944-954. https://doi.org/10.1109/JSTQE.2004.835997
[3]
Huang, B., Shu, X. and Du, Y. (2017) Intensity Modulated Torsion Sensor Based on Optical Fiber Reflective Lyot Filter. Optics Express, 25, 5081-5090.
https://doi.org/10.1364/OE.25.005081
[4]
Jelger, P. and Laurell, F. (2007) Efficient Narrow-Linewidth Volume-Bragg Grating-Locked Nd: Fiber Laser. Optics Express, 15, 11336-11340.
https://doi.org/10.1364/OE.15.011336
[5]
Zheng, J., Zhang, Y., Li, L., Tang, S., Sh, Y. and Chen, X. (2015) An Equivalent-Stepped-Index-Coupled DFB Semiconductor Laser and Laser Array Realized by Stepping the Duty Cycle of the Sampled Bragg Grating Optics & Laser Technology, 67, 38-43. https://doi.org/10.1016/j.optlastec.2014.09.011
[6]
Li, F., Lan, T., Huang, L., Ikechukwu, I.P., Liu, W. and Zhu, T. (2019) Spectrum Evolution of Rayleigh Backscattering in One-Dimensional Waveguide. Opto-Electronic Advances, 2, 08190012. https://doi.org/10.29026/oea.2019.190012
[7]
Wang, Y., Wu, H., Chen, C., Zhou, Y., Wang, Y., Liang, L., Tian, Z., Qin, L. and Wang, L. (2019) An Ultra-High-SMSR External-Cavity Diode Laser with a Wide Tunable Range around 1550 nm. Applied Sciences, 9, 4390.
https://doi.org/10.3390/app9204390
[8]
Zhu, T., Bao, X. and Chen, L. (2011) A Single Longitudinal-Mode Tunable Fiber Ring Laser Based on Stimulated Rayleigh Scattering in a Nonuniform Optical Fiber. Journal of Lightwave Technology, 29, 1802-1807.
https://doi.org/10.1109/JLT.2011.2142292
[9]
Zhu, T., Bao, X. and Chen, L. (2012) A Self-Gain Random Distributed Feedback Fiber Laser Based on Stimulated Rayleigh Scattering. Optics Communications, 285, 1371-1374. https://doi.org/10.1016/j.optcom.2011.11.072
[10]
Zhu, T., Bao, X., Chen, L., Liang, H. and Dong, Y. (2010) Experimental Study on Stimulated Rayleigh Scattering in Optical Fibers. Optics Express, 18, 22958-22963.
https://doi.org/10.1364/OE.18.022958
[11]
Zhu, T., Huang, S., Shi, L., Huang, W., Liu, M. and Chiang, K. (2014) Rayleigh Backscattering: A Method to Highly Compress Laser Linewidth. Chinese Science Bulletin, 59, 4631-4636. https://doi.org/10.1007/s11434-014-0603-0
[12]
Huang, S., Zhu, T., Cao, Z., Liu, M., Deng, M., Liu, J. and Li, X. (2016) Laser Linewidth Measurement Based on Amplitude Difference Comparison of Coherent Envelope. IEEE Photonics Technology Letters, 28, 759-762.
https://doi.org/10.1109/LPT.2015.2513098
[13]
Li, Y., Huang, L., Gao, L., Lan, T., Cao, Y., Ikechukwu, I.P., Shi, L., Liu, Y., Li, F. and Zhu, T. (2018) Optically Controlled Tunable Ultra-Narrow Linewidth Fiber Laser with Rayleigh Backscattering and Saturable Absorption Ring Optics Express, 26, 26896-26906. https://doi.org/10.1364/OE.26.026896
[14]
Dang, L., Huang, L., Li, Y., Cao, Y., Lan, T., Iroegbu, P.I., Cao, Z., Mei, K., Liang, L. and Fu, S. (2022) A Longitude-Purification Mechanism for Tunable Fiber Laser Based on Distributed Feedback. Journal of Lightwave Technology, 40, 206-214.
https://doi.org/10.1109/JLT.2021.3118841
[15]
Dang, L., Huang, L., Cao, Y., Li, Y., Iroegbu, P.I., Lan, T., Shi, L., Yin, G. and Zhu, T. (2022) Side Mode Suppression of SOA Fiber Hybrid Laser Based on Distributed Self-Injection Feedback. Optics & Laser Technology, 147, Article 107619.
https://doi.org/10.1016/j.optlastec.2021.107619
[16]
Dang, L., Huang, L., Shi, L., Li, F., Yin, G., Gao, L., Lan, T., Li, Y., Jiang, L. and Zhu, T. (2023) Ultra-High Spectral Purity Laser Derived from Weak External Distributed Perturbation. Opto-Electronic Advances, 6, 1-10.
https://doi.org/10.29026/oea.2023.210149
[17]
Schunk, N. and Petermann, K. (1986) Noise Analysis of Injection-Locked Semiconductor Injection Lasers. IEEE Journal of Quantum Electronics, 22, 642-650.
https://doi.org/10.1109/JQE.1986.1073018
[18]
Schunk, N. and Petermann, K. (1988) Numerical Analysis of the Feedback Regimes for a Single-Mode Semiconductor Laser with External Feedback. IEEE Journal of Quantum Electronics, 24, 1242-1247. https://doi.org/10.1109/3.960
[19]
Guo, W., Tan, M., Jiao, J., Guo, X. and Sun, N. (2014) 980 nm Fiber Grating External Cavity Semiconductor Lasers with High Side Mode Suppression Ratio and High Stable Frequency. Journal of Semiconductors, 35, Article 084007.
https://doi.org/10.1088/1674-4926/35/8/084007