|
基于EDEM的立轴高频振动搅拌机搅拌效果分析
|
Abstract:
针对混凝土搅拌过程中混凝土的均匀性难以准确监测的问题,通过使用离散元分析软件,分析从0~100 Hz激振频率下,搅拌过程中及搅拌完成后宏观颗粒分布状态和微观颗粒的均匀性情况。结果表明,高频振动作用对搅拌过程的强化效果较强制搅拌和中低频振动搅拌较好,高频振动搅拌下的混合离散度较小。然而,振动频率过高则会降低颗粒的均匀性,影响搅拌质量。
To address the issue of difficulty in accurately monitoring the uniformity of concrete during the mixing process, discrete element analysis software was used to analyze the macroscopic particle distribution and microscopic particle uniformity during and after the mixing process at a frequency of 0~100 Hz excitation. The results indicate that the strengthening effect of high-frequency vibra-tion on the mixing process is better than that of forced stirring and medium to low-frequency vibra-tion stirring, and the mixing dispersion under high-frequency vibration stirring is smaller. However, if the vibration frequency is too high, it will reduce the uniformity of particles and affect the mixing quality.
[1] | 冯忠绪. 混凝土搅拌理论与设备[M]. 北京: 人民交通出版社, 2001. |
[2] | 胡连花. 高效率低能耗混凝土搅拌装置的研究[D]: [硕士学位论文]. 济南: 山东大学, 2015. |
[3] | 冯忠绪, 江建卫, 于丽娟, 等. 搅拌设备设计讲座(第十四讲)混凝土振动搅拌技术[J]. 工程机械, 2008, 39(4): 63-66+103. |
[4] | 边策, 李金明, 田正宏, 苏振华. 受振混凝土流变性试验研究[J]. 水利规划与设计, 2020(10): 94-100+145. |
[5] | 王玄丰. 振动搅拌高性能混凝土的设备参数优化研究[D]: [硕士学位论文]. 西安: 长安大学, 2019. |
[6] | Bao, Y.Y., Li, T.C., Wang, D.F., Cai, Z.Q. and Gao, Z.M. (2020) Discrete Element Method Study of Effects of the Impeller Configuration and Operating Conditions on Parti-cle Mixing in a Cylindrical Mixer. Particuology, 49, 146-158.
https://doi.org/10.1016/j.partic.2019.02.002 |
[7] | Chandratilleke, G.R., Dong, K.J. and Shen, Y.S. (2018) DEM Study of the Effect of Blade-Support Spokes on Mixing Performance in a Ribbon Mixer. Powder Technology, 326, 123-136. https://doi.org/10.1016/j.powtec.2017.12.055 |
[8] | Samsonova, P.S., Lozovaya, S.Y., Bogdanov, N.E. and Lozovoi, N.M. (2020) Mixing Process Simulation of the Initial Building Materials Components Using the DEM So-lution EDEM System. IOP Conference Series: Materials Science and Engineering, 945, Article ID: 012028. https://doi.org/10.1088/1757-899X/945/1/012028 |
[9] | Nagata, Y., Minagawa, M., Hisatomi, S., Tsunazawa, Y., Okuyama, K., Iwamoto, M., Sekine, Y. and Tokoro, C. (2019) Investigation of Optimum Design for Nanoparticle Dis-persion in Centrifugal Bead Mill Using DEM-CFD Simulation. Advanced Powder Technology, 30, 1034-1042. https://doi.org/10.1016/j.apt.2019.02.018 |
[10] | 卢兴福, 左志坚, 龚曙光, 谢桂兰, 刘克俭. 非球体颗粒在强力混合机中混匀特性的数值模拟[J]. 烧结球团, 2019, 44(5): 38-42. |
[11] | 左志坚. 强力混合机粉体颗粒混匀过程及桨叶磨损研究[D]: [博士学位论文]. 湘潭: 湘潭大学, 2020. |
[12] | Liu, P.Y., Yang, R.Y. and Yu, A.B. (2013) DEM Study of the Transverse Mixing of Wet Particles in Rotating Drums. Chemical Engineering Science, 86, 99-107. https://doi.org/10.1016/j.ces.2012.06.015 |
[13] | 冯忠绪, 王卫中, 姚运仕, 赵利军, 江建卫. 搅拌设备设计(第四讲)搅拌机合理转速的确定[J]. 工程机械, 2005, 36(4): 60-64. |
[14] | 郭良, 赵悟, 王敬, 沈威威. 基于EDEM双立轴振动搅拌机叶片安装角度仿真分析及试验研究[J]. 现代制造技术与装备, 2018(11): 3-6. |
[15] | 胡国明. 颗粒系统的离散元素法分析仿真[M]. 武汉: 武汉理工大学出版社, 2010. |
[16] | Guilkey, J. and Weiss, J.A. (2003) Im-plicit Time Integration for the Material Point Method: Quantitative and Algorithmic Comparisons with the Finite Element Method. International Journal for Numerical Methods in Engineering, 57, 1323-1338. https://doi.org/10.1002/nme.729 |
[17] | Coetzee, C.J., Vermeer, P.A. and Basson, A.H. (2005) The Modelling of Anchors Using the Material Point Method. International Journal for Numerical and Analytical Methods in Geomechan-ics, 29, 879-895.
https://doi.org/10.1002/nag.439 |