全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Prediction of Wearing of Cutting Tools Using Real Time Machining Parameters and Temperature Using Rayleigh-Ham Method

DOI: 10.4236/mme.2023.132003, PP. 35-54

Keywords: Machining, Cutting Temperature, Modeling, Wear, Cutting Tool

Full-Text   Cite this paper   Add to My Lib

Abstract:

Wear of cutting tools is a big concern for industrial manufacturers, because of their acquisition cost as well as the impact on the production lines when they are unavailable. Law of wear is very important in determining cutting tools lifespan, but most of the existing models don’t take into account the cutting temperature. In this work, the theoretical and experimental results of a dynamic study of metal machining against cutting temperature of a treated steel of grade S235JR with a high-speed steel tool are provided. This study is based on the analysis of two complementary approaches, an experimental approach with the measurement of the temperature and on the other hand, an approach using modeling. Based on unifactorial and multifactorial tests (speed of cut, feed, and depth of cut), this study allowed the highlighting of the influence of the cutting temperature on the machining time. To achieve this objective, two specific approaches have been selected. The first was to measure the temperature of the cutting tool and the second was to determine the wear law using Rayleigh-Ham dimensional analysis method. This study permitted the determination of a law that integrates the cutting temperature in the calculations of the lifespan of the tools during machining.

References

[1]  Bedrin, C. (1976) Généralités sur la coupe et l’usure des outils. Recueil de conférences: L’usure des outils dans la coupe des métaux. INSA de Lyon.
[2]  Padilla, P., Anselmetti B., Mathieu L. and Raboyeau M. (1986) Production mécanique. Fabrication générale. Bordas, Paris, 35-50.
[3]  Yang, W.H. and Tarng, Y.S. (1998) Design Optimization of Cutting Parameters for Turning Operations Based on the Taguchi Method. Journal of Materials Processing Technology, 84, 122-129.
https://doi.org/10.1016/S0924-0136(98)00079-X
[4]  Lalwani, D.I., Mehta, N.K. and Jain, P.K. (2008) Experimental Investigations of Cutting Parameters Influence on Cutting Forces and Surface Roughness in Finish Hard Turning of MDN250 Steel. Journal of Materials Processing Technology, 206, 167-179.
https://doi.org/10.1016/j.jmatprotec.2007.12.018
[5]  Ghasempoor, A., Jeswiet, J. and Moore, T.N. (1999) Real Time Implementation of On-Line Tool Condition Monitoring in Turning. International Journal of Machine Tools and manufacture, 39, 1883-1902.
https://doi.org/10.1016/S0890-6955(99)00035-8
[6]  Vergnas, J. (1982) Usinage, Technologie et Pratique. Génie Mécanique, Dunod, Paris.
[7]  Ilunga, J.C.M., Mpoyi, D.K. and Ugwiri, M.A. (2018) Contribution à l’amélioration de la surveillance de l’usure de l’outil de coupe en tournage par analyse des signaux vibratoires: Analyse de la puissance de coupe. International Journal of Innovation and Applied Studies, 24, 602-612.
http://www.ijias.issr-journals.org/
[8]  Krishnakumar, P., Rameshkumar, K. and Ramachandran, K. (2015) Tool Wear Condition Prediction Using Vibration Signals in High Speed Machining (HSM) of Titanium (Ti-6AL-4v) Alloy. Procedia Computer Science, 50, 270-275.
https://doi.org/10.1016/j.procs.2015.04.049
[9]  Lauro, C.H., Brandão, L.C., Baldo, D., Reis, R.A. and Davim, J.P. (2014) Monitoring and Processing Signal Applied in Machining Processes—A Review. Measurement, 58, 73-86.
https://doi.org/10.1016/j.measurement.2014.08.035
[10]  Chandra, N. (2020) Systèmes intégrés de surveillance de l’état des outils et leurs Applications: Un Examen Complet. Procedia Manufacturing, 48, 852-886.
[11]  Attanasio, A., Ceretti, E., Fiorentino, A., Cappellini, C. and Giardini, C. (2010) Investigation and FEM-Based Simulation of Tool Wear in Turning Operations with Uncoated Carbide Tools. Wear, 269, 344-350.
https://doi.org/10.1016/j.wear.2010.04.013
[12]  Barlier, C. and Poulet, B. (1999) Mémothec. Génie Mécanique. 2nd Edition, Casteilla, Toulouse.
[13]  Attanasio, A., Gelfi, M., Giardini, C. and Remino, C. (2006) Minimal Quantity Lubrication in Turning: Effect on Tool Wear. Wear, 260, 333-338.
https://doi.org/10.1016/j.wear.2005.04.024
[14]  Trent, E.M. and Wright, P.K. (2000) Chapter 5-Heat in Metal Cutting. In: Metal Cutting, Fourth Edition, Butterworth-Heinemann, Oxford.
https://doi.org/10.1016/B978-075067069-2/50007-3
[15]  Amiri, M. and Soleimani, S. (2021) ML-Based Group Data Processing Method: An Improvement over Conventional GMDH. Complex & Intelligent Systems, 7, 2949-2960.
https://doi.org/10.1007/s40747-021-00480-0
[16]  Weil, R. (1971) Techniques d’usinage. Dunod, Paris.
[17]  Geiskopf, F., CoLandon, Y. and Duc, E. (1999) Usinage à grande vitesse. Rapport ENS Cachan, LURPA.
[18]  Bouziane, A., Boulanouar, L., Azizi, M.W. and Keblouti, O. (2016) Etude de l’effet de la vitesse de coupe sur l’usure des outils de coupe en carbure métallique revêtu et non revêtu. Proceedings of Third International Conference of Energy, Materials, Applied Energetics and Pollution (ICEMAEP), Constantine, 30-31 October 2016, 1030-1035.
[19]  Bouacha, K., Yallese, M.A., Mabrouki, T. and Rigal, J.-F. (2010) Statistical Analysis of Surface Roughness and Cutting Forces Using Response Surface Methodology in Hard Turning of AISI 52100 Bearing Steel with CBN Tool. International Journal of Refractory Metals and Hard Materials, 28, 349-361.
https://doi.org/10.1016/j.ijrmhm.2009.11.011
[20]  Hessainia, Z., Yallese, M.A., Lakhdar, B. and Tarek, M. (2015) On the Application of Response Surface Methodology for Predicting and Optimizing Surface Roughness and Cutting Forces in Hard Turning by PVD Coated Insert. International Journal of Industrial Engineering Computations, 6, 267-284.
https://doi.org/10.5267/j.ijiec.2014.10.003
[21]  Baizeau, (2016) Prediction of Surface Integrity Using Flamant—Boussinesq Analytical Model. CIRP Annals, 65, 81-84.
https://hal.archives-ouvertes.fr/hal-01361335
https://doi.org/10.1016/j.cirp.2016.04.043
[22]  Zheng, G., Xu, R., Cheng, X., Zhao, G., Lia, L. and Zhao, J. (2018) Effect of Cutting Parameters on Wear Behavior of Coated Tool and Surface Roughness in High-Speed Turning of 300M. Measurement, 125, 99-108.
https://www.elsevier.com/locate/measurement
https://doi.org/10.1016/j.measurement.2018.04.078
[23]  Brocail, J., Watremez, M. and Dubar, L. (2010) Identification of a Friction Model for Modelling of Orthogonal Cutting. International Journal of Machine Tools and Manufacture, 50, 807-814.
https://doi.org/10.1016/j.ijmachtools.2010.05.003
[24]  Abhang, L.B. and Hameedullah, M. (2010) Chip-Tool Interface Temperature Prediction Model for Turning Process. International Journal of Engineering, Science and Technology, 2, 382-393.
[25]  Duan, R., Deng, J., Ge, D., Ai, X., Liu, Y., Meng, R., Li, X. and Chen, H. (2018) A Thermo-Mechanical Coupled Model of Derivative Cutting of Microtextured Tools. The International Journal of Advanced Manufacturing Technology, 98, 2849-2863.
https://doi.org/10.1007/s00170-018-2483-y
[26]  Ghodam, S.D. (2014) Temperature Measurement of a Cutting Tool in Turning Process by Using Tool Work Thermocouple. International Journal of Research in Engineering and Technology, 3, 831-835.
https://doi.org/10.15623/ijret.2014.0304147
[27]  Kus, A., Isik, Y., Cakir, M.C., Coşkun, S. and Özdemir, K. (2015) Thermocouple and Infrared Sensor-Based Measurement of Temperature Distribution in Metal Cutting. sensors, 15, Article 1274-1291.
https://www.mdpi.com/journal/sensors
https://doi.org/10.3390/s150101274
[28]  Amritkar, A., Prakash, C. and Kulkarni, A. (2012) Development of Temperature Measurement Setup for Machining. World Journal of Science and Technology, 2, 15-19.
[29]  Vergnas, J. (1982) Usinage, Technologie et Pratique. Génie Mécanique, Dunod, Malakoff.
[30]  GERMAIN, D. (2011) Développement d’un modèle d’efforts de coupe intégrant le contact en dépouille: Application au tournage de superfinition du cuivre Cu-c2. Ph.D. Thesis, Ecole Nationale Supérieure d’Arts et Métiers, Paris.
[31]  Kaymakci, M., Kilic, Z.M. and Altintas, Y. (2012) Unified Cutting Force Model for Turning, Boring, Drilling and Milling Operations. International Journal of Machine Tools and Manufacture, 54-55, 34-45.
https://doi.org/10.1016/j.ijmachtools.2011.12.008
[32]  Chinchanikar, S. and Choudhury, S.K. (2016) Modélisation de la force de coupe en tenant compte de l’effet d’usure de l’outil lors du tournage en acier allié AISI 4340 durci à l’aide de multicouches Outils en carbure revêtus de TiCN/Al2O3/TiN. The International Journal of Advanced Manufacturing Technology, 83, 1749-1762.
https://doi.org/10.1007/s00170-015-7662-5
[33]  Orra, K. and Shoudhury, S.K. (2018) Modélisation mécaniste pour prédire les efforts de coupe lors de l’usinage en tenant compte de l'effet du rayon du nez de l’outil sur la formation de copeaux et la zone d’usure de l’outil. International Journal of Mechanical Sciences, 142-143, 255-268.
https://doi.org/10.1016/j.ijmecsci.2018.05.004
[34]  Babouri, M.K., Ouelaa, N. and Djeba, A. (2012) Identification de l’évolution de l’usure d’un outil de tournage basée sur l’analyse des efforts de coupe et des vibrations. Synthèse: Revue des Sciences et de la Technologie, 24, 123-134.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133