全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Risk Assessment of Human Exposure to 2-Methylnaphthalene, Phenanthrene and Didodecylphthalate via Consumption of Shrimps (Macrobrachium vollenhovenii) from Qua Iboe River Estuary, South-South Nigeria

DOI: 10.4236/gep.2023.116009, PP. 125-144

Keywords: Bioaccumulation, Human Exposure, Toxicity Potential, Shrimp

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ibeno, one of the major oil producing communities in South-South Nigeria is a coastal commercial fishery hub that houses Axon-Mobil operational base and pharmaceutical/plastic industries. Shrimp species (Macrobrachium vollenhovenii) is a major aquatic food frequently consumed by inhabitants of the coastal area and those living hinterland, thus, being a major route of human exposure to 2-methylnaphthalene, phenanthrene and didodecyl phthalate in the area. The purpose of the study was to evaluate factors that determine bioaccumulation and assess the potential cancer and non-cancer risk posed by these contaminants through human (adult and children) exposure via shrimp’s consumption using gas chromatography-mass spectroscopy. The associated sediment showed higher mean concentrations of 2-methylnaphthalene, phenanthrene and didodecylphthalate at the two sites relative to those in fresh shrimp samples and factors such as size, lipid content, physicochemical property and environmental condition influenced the uptake of these contaminants. Besides water loss, the traditional drying process enhanced the levels of phenanthrene and didodecylphthalate in dry shrimps most likely due to combustion process and relatively low volatility, respectively and lowered the level of 2-methylnapthalene linked to its relatively high volatility. The potential of cancer and non-cancer development in human were highest via dry large shrimp consumption and followed the sequence: dry small shrimp > fresh large shrimp > fresh small shrimp and were within the USEPA reference standards. Although children were more vulnerable, the exposed individuals may not exhibit notable health-associated adverse effects in the near future. Thus, adequate advocacy is needed to sensitize those living in the catchments who often prefer dry shrimp in their meals on the adverse health implications of these contaminants for their survival and the need to maintain the health of the ecosystem.

References

[1]  Adebayo, T. H. (2021). INVESTIGATION: Aiteo, Nigerian Regulators Misreported Nembe Oil Spill that Caused Severe Environmental Damage. Premium Times.
[2]  Adeniyi, A., Dayomi, M., & Okedeyi, O. (2008). An Assessment of the Levels of Phthalate Esters and Metals in the Mule Dane Open Dump Thohoyandou, Limpopo Province, South Africa. Chemistry Central Journal, 2, Article No. 9.
https://doi.org/10.1186/1752-153X-2-9
[3]  Anayat, M., Agnihotri, R. K., Vamil, R., Kumar, S., & Sharma, R. (2014). Role of Cd and Hg on Biochemical Contents of Fennel and Its Reduction by Exogenous Treatment of Nitrogen. International Journal of Scientific and Research Publications, 4, 1-6.
[4]  Asuquo, I. E., Akpan, I. I., Abiaobo, N. O., & George, I. E. (2022). Biodiversity and Abundance of Fish Species in EkpeneUkpa River, a Tributary of Qua Iboe River Estuary, Niger Delta, Nigeria. Journal of Biodiversity and Endangered Species, 10, 1-6.
[5]  Baloyi, N. D., Tekere, M., Maphangwa, K. W., & Masindi, V. (2021). Insights into the Prevalence and Impacts of Phthalate Esters in Aquatic Ecosystems. Frontiers in Environmental Science, 9, Article 684190.
https://doi.org/10.3389/fenvs.2021.684190
[6]  Barron, M. G., Albro, P. W., & Hayton, W. L. (1995). Bioitransformation of Di(2-Ethylhe-xyl)Phthalate by Rainbow Trout. Environmental Toxicology & Chemistry, 14, 873-876.
https://doi.org/10.1002/etc.5620140519
[7]  Burkhard, B., Brigit, G. D., & Randolph, J. N. (2003). IL-23 Produced by CNS-Resident Cells Controls T Cell Encephalitogenicity during the Effector Phase of Experimental Autoimmune Encephalomyelitis. Journal of Clinical Investigation, 112, 1186-1191.
https://doi.org/10.1172/JCI200319079
[8]  Das, M. T., Kumar, S. S., Ghosh, P., Shah, G., Malyan, S. K., Bajar, S., Thakur, I. S., & Singh, L. (2021). Remediation Strategies for Mitigation of Phthalate Pollution: Challenges and Future Perspectives. Journal of Hazardous Materials, 409, Article ID: 124496.
https://doi.org/10.1016/j.jhazmat.2020.124496
[9]  Dominguez, C., Sarkar, S., Bhattacharya, M., Chatterjee, B., Bhattacharya, B., Jover, E., Albaiges, J., Bayona., J., Alarm, M. D., & Satpathy, K. (2010). Quantification and Source Identification of Polycyclic Aromatic Hydrocarbons in Core Sediments from Sundarban Mangrove Wetland, India. Archives of Environmental Contamination and Toxicology, 59, 49-61.
https://doi.org/10.1007/s00244-009-9444-2
[10]  Dosunmu, I. M., Oyo-Ita, O. O., & Orok, E. O. (2016). Risk Assessment of Human Exposure to Polycyclic Aromatic Hydrocarbons via Shrimp (Macrobrachium felicinum) Consumption along the Imo River Catchments, SE Nigeria. Environmental Geochemistry and Health, 38, 1333-1345.
https://doi.org/10.1007/s10653-016-9799-z
[11]  Eichler, C. M. A., Cohen Hubal, E. A., & Little, J. C. (2019). Assessing Human Exposure to Chemicals in Materials, Products and Articles. Environmental Science & Technology, 53, 13583-13597.
https://doi.org/10.1021/acs.est.9b03794
[12]  Ellington, J. J. (1999). Octanol/Water Partition Coefficients and Water Solubilities of Phthalate Esters. Journal of Chemical and Engineering Data, 44, 1414-1418.
https://doi.org/10.1021/je990149u
[13]  Fierens, T., Servaes, K., Van Holderbeke, M., Geerts, L., De Henauw, S., Sioen, I., & Vanermen, G. (2012). Analysis of Phthalates in Food Products and Packaging Materials Sold on the Belgian Market. Food and Chemical Toxicology, 50, 2575-2583.
https://doi.org/10.1016/j.fct.2012.04.029
[14]  Hahn, J.-U., Assenmacher-Maiworm, H., Koch, H. M., Pannwitz, K.-H., Hebisch, R., Brock, T. H., & Hartwig, A. (2016). Phthalates, Long-Chain (Diisononyl Phthalate, Di-N-Decyl Phthalate, Diisodecyl Phthalate, Diundecyl Phthalate and Idodecyl Phthalate). The MAK Collection for Occupational Health and Safety, 1, 2731-2746.
[15]  Hanson, N., Jenson, Y. B., Appelquist, H., & Morch, E. (1998). The Uptake and Release of Petroleum Hydrocarbons by the Marine Mussels Mytilus edulis. In S.H. Jenkins (Ed.), Ninth International Conference on Water Pollution Research (pp. 351-359). Pergamon.
https://doi.org/10.1016/B978-0-08-022939-3.50032-5
[16]  Hassan, M. R., Alam, K. D., Mahjabeen, S., Rahman, M. F., & Akter, M. U. (2011). Free Radical Scavenging Potential of Methanol Extract of Smilax Roxburghiana. Pharmacologyonline, 2, 774-783.
[17]  Huang, P.-C., Tien, C.-J., Sun, Y.-M., Hsieh, C.-Y., & Lee, C.-C. (2008). Occurrence of Phthalates in Sediment and Biota: Relationship to Aquatic Factors and the Biota-Sediment Accumulation Factor. Chemosphere, 73, 539-544.
https://doi.org/10.1016/j.chemosphere.2008.06.019
[18]  Hunter, M., Stephenson, T., Kiek, P. W., Perry, R., & Lester, J. N., (1986). Effect of Salinity Gradients and Heterotrophic Microbial Activity on Biodegradation of Nitrilotriacetic Acid in Laboratory Simulations of the Estuarine Environment. Applied and Environmental Microbiology, 51, 919-925.
https://doi.org/10.1128/aem.51.5.919-925.1986
[19]  Hyun, J. H., Ju, S. J., & Harvey, H. R. (2002). Fecal Contamination Associated with Local Reclamation Activity in the Han River Estuary. Journal of the Korean Society of Oceanography, 37, 1-8.
[20]  Ibe, K. A., Offem, J. O., Ibok, U. J., Nganje, T., & Akpan, E. R. (2005). Polycyclic Aromatic Hydrocarbon Flux in the Qua Iboe River System, South Eastern Nigeria. African Journal of Environmental Pollution & Health, 4, 44-51.
[21]  Kalachova, K., Pulkrabova, J., Drabova, L., Cajka, T., Kocourek, V., & Hajslova, J. (2011). Simplified and Rapid Determination of Polychlorinated Biphenyls, Polybrominated Diphenyl Ethers, and Polycyclic Aromatic Hydrocarbons in Fish and Shrimps Integrated into a Single Method. Analytica Chimica Acta, 707, 84-91.
https://doi.org/10.1016/j.aca.2011.09.016
[22]  Lin, Z.-P., Ikonomou, M. G., Jing, H., Mackintosh, C., & Gobas, F. A. P. C. (2003). Determination of Phthalate Ester Congeners and Mixtures by LC/ESI-MS in Sediments and Biota of an Urbanized Marine Inlet. Environmental Science & Technology, 37, 2100-2108.
https://doi.org/10.1021/es026361r
[23]  MacIntosh, D. L., Spengler, J. D., Ozkaynak, H., Tsai, L. H., & Ryan, P. B. (1996). Dietary Exposures to Selected Metals and Pesticides. Environmental Health Perspective, 104, 202-209.
https://doi.org/10.1289/ehp.96104202
[24]  Mackay, D., Shiu, W.-Y., & Ma, K. C. (1997). Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals. Vol. II: Polynuclear Aromatic Hydrocarbons, Polychlorinated Dioxins, Dibenzofurans. CRC Press.
[25]  Mario Russo, M. V., Notardonato, I., Avinob, P., & Cinellia, G. (2014). Determination of Phthalate Esters at Trace Levels in Light Alcoholic Drinks and Soft Drinks by XAD-2 Adsorbent and Gas Chromatography Coupled with Ion Trap-Mass Spectrometry Detection. Analytical Methods, 6, 7030-7037.
https://doi.org/10.1039/C4AY00926F
[26]  Muncaster, B. W., Hebert, P. D., & Lazar, R. (1990). Biological and Physical Factors Affecting Organic Contaminants in Freshwater Mussels. Archives of Environmental Contamination and Toxicology, 19, 25-34.
[27]  National Oceanic and Atmospheric Administration [NOAA] (2006). Quality Assurance Plan for Analysis of Environmental Samples for Polycyclic Aromatic Hydrocarbons, Persistent Organic Pollutants, Fatty Acids, Stable Isotope Ratios, Lipid Classes and Metabolites of Polycyclic Aromatic Compounds. NOAA Technical Memorandum NMFS-NWFSC-77.
[28]  Ogunwole, G. A., Saliu, J. K., & Osuala, F. I. (2021). Seasonal Occurrences and Risk Assessment of Phthalate Esters in Sediment, Water and Biota of Two Sub-Saharan Rivers. Bulletin of Environmental Contamination and Toxicology, 106, 832-838.
https://doi.org/10.1007/s00128-021-03187-7
[29]  Olsen, G. H., Smit, M. G., Carroll, J., Jæger, I., Smith, T., & Camus, L. (2011). Arctic versus Temperate Comparison of Risk Assessment Metrics for 2-Methyl-Naphthalene. Journal Marine Environmental Research, 72, 179-187.
https://doi.org/10.1016/j.marenvres.2011.08.003
[30]  Oyo-Ita, I. O., Oyo-Ita, O. E., Dosunmu, M. I., Dominquez, C., Bayona, J. M., Albaiges, J. (2016). Distribution and Sources of Petroleum Hydrocarbons in Recent Sediments of the Imo River, SE Nigeria. Archive of Environmental Contamination & Toxicology, 70, 372-382.
https://doi.org/10.1007/s00244-015-0237-5
[31]  Oyo-Ita, I. O., Oyo-Ita, O. E., Ugim, S. U., Nnaemeka, N. N. J., & Elarbaoui, S. (2017). Source and Toxicological Assessment of Polycyclic Aromatic Hydrocarbons in Sediments from Imo River, Southeastern Nigeria. Polycyclic Aromatic Compounds, 39, 1563-5333.
https://doi.org/10.1080/10406638.2017.1300177
[32]  Oyo-Ita, O., Offem, J. O., Ekpo, B. O., & Adie, P. A. (2013). Anthropogenic PAHs in Mangrove Sediments of the Calabar River, SE Niger Delta, Nigeria. Applied Geochemistry, 28, 212-219.
https://doi.org/10.1016/j.apgeochem.2012.09.011
[33]  Park, J. H., & Penning, T. M. (2009). Polyaromatic Hydrocarbons. In: Stadler, R. H., & Lineback, D. R. (Eds.), Process-Induced Food Toxicants, Occurrence, Formation, Mitigation and Health Risks (pp. 243-282). John Wiley and Sons.
[34]  Sabijic, A. Z. G. (1987). The Prediction of Fish Bio Concentration Factors of Organic Pollutants from the Molecular Connectivity Model. Hygiene, 33, 493-496.
[35]  Schettler, T., Skakkebæk, N. E., De Kretser, D., & Leffers, H. (2006). Human Exposure to Phthalates via Consumer Products. International Journal of Andrology, 29, 134-139.
https://doi.org/10.1111/j.1365-2605.2005.00567.x
[36]  Tam, N. F. Y., Guo, C. L., Yau, W. Y., & Wong, Y. S. (2002). Preliminary Study on Biodegradation of Phenanthrene by Bacteria Isolated from Mangrove Sediments in Hong Kong. Marine Pollution Bulletin, 45, 316-324.
https://doi.org/10.1016/S0025-326X(02)00108-X
[37]  Tanner, E. M., Hallerbäck, M. U., Wikström, S., Lindh, C., Kiviranta, H., Gennings, C., & Bornehag, C.-G. (2020). Early Prenatal Exposure to Suspected Endocrine Disruptor Mixtures Is Associated with Lower IQ at Age Seven. Environment International, 134, Article ID: 105185.
https://doi.org/10.1016/j.envint.2019.105185
[38]  U.S. Environmental Protection Agency [USEPA] (2006). Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories, 2: Risk Assessment and Fish Consumption Limits.
http://www.epa.gov/ost/fishadvice/volum2/index.html
[39]  USAID/West Africa. (2008). Trade Hub Annual Report.
http://www.watradehub.com/resources/resourcesfiles.com
[40]  USEPA (2020). Regional Screening levels (RSLs) Table. Updated May 1, 2020. United States Environmental Protection Agency.
[41]  Vandenberg, L. N., Colborn, T., Hayes, T. B., Heindel, J. J., Jacobs Jr., D. R., Lee, D.-H., Shioda, T., Soto, A. M., vom Saal, F. S., Welshons, V. W., Zoeller, R. T., & Myers, J. P. (2012). Hormones and Endocrine-Disrupting Chemicals: Low-Dose Effects and Nonmonotonic Dose Responses. Endocrine Reviews, 33, 378-455.
https://doi.org/10.1210/er.2011-1050
[42]  Wang, X. J., Chen, J., Zhang, Z. H., Piao, X. Y., Hu, J. D., & Tao, S. (2004). Distribution and Sources of Polycyclic Aromatic Hydrocarbons in Soil Profiles of Tianjin Area, People’s Republic of China. Bulletin of Environmental Contamination and Toxicology, 73, 739-748.
https://doi.org/10.1007/s00128-004-0488-8
[43]  Wen, H.-J., Huang, H.-B., Tsai, T.-L., & Wang, S.-L. (2020). Phthalates. In R. Kishi, & P. Grandjean (Eds.), Health Impacts of Developmental Exposure to Environmental Chemicals. Current Topics in Environmental Health and Preventive Medicine (pp. 375-404). Springer.
https://doi.org/10.1007/978-981-15-0520-1_15
[44]  Wittassek, M., Angerer, J., Kolossa-Gehring, M., Schäfer, S. D., Klockenbusch, W., Dobler, L., Günsel, A. K., Müller, A., & Wiesmüller, G. A. (2009). Fetal Exposure to Phthalates—A Pilot Study. International Journal of Hygiene and Environmental Health, 212, 492-498.
https://doi.org/10.1016/j.ijheh.2009.04.001
[45]  Yunker, M. B., & McDonald, R. W. (2003). Alkanes and PAHs Depositional History, Sources and Fluxes in Sediments from the Fraser River Basin and Strait of Georgia, Canada. Organic Geochemistry, 34, 1429-1454.
https://doi.org/10.1016/S0146-6380(03)00136-0
[46]  Zavoda, J., Cutright, T., Szpak, J., & Fallon, E. (2001). Uptake, Selectivity, and Inhibition of Hydroponic Treatment of Contaminants. Journal of Environmental Engineering, 127, 502-508.
https://doi.org/10.1061/(ASCE)0733-9372(2001)127:6(502)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133