全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Analyzing of the ENSO Index Using Extreme Value Theory

DOI: 10.4236/gep.2023.116007, PP. 96-105

Keywords: Extreme Value Theory, GP, ENSO, Ni?o3.4, SOI

Full-Text   Cite this paper   Add to My Lib

Abstract:

We predicted the extreme values of the ENSO index, the Niño3.4 index, and the Southern Oscillation Index (SOI) using extreme value theory. Various diagnostic plots for assessing the accuracy of the Generalized Pareto (GP) model fitted to the Niño3.4 index and SOI are shown, and all four diagnostic plots support the fitted GP model. Because the shape parameter of the Niño3.4 was negative, the Niño3.4 index had a finite upper limit. In contrast, that of the SOI was zero, therefore the SOI did not have a finite upper limit, and there is a possibility that a significant risk will occur. We predicted the maximum return level for the return periods of 10, 20, 50, 100, 350, and 500 years and their respective 95% confidence intervals, CI. The 10-year, and 100-year return levels for Niño3.4 were estimated to be 2.41, and 2.62, with 95% CI [2.22, 2.59], and [2.58, 2.66], respectively. The Ni

References

[1]  Alexandros, A. Z., Nickolaos, E. F., & Athanasios, A. P. (2007). Modeling Earthquake Risk via Extreme Value Theory and Pricing the Respective Catastrophe Bonds. ASTIN Bulletin, 37, 163-183.
https://doi.org/10.2143/AST.37.1.2020804
[2]  Chen, L., Li, T., Wang, B., & Wang, L. (2017). Formation Mechanism for 2015/16 Super El Niño. Scientific Reports, 7, Article No. 2975.
https://doi.org/10.1038/s41598-017-02926-3
[3]  Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer-Verlag.
https://doi.org/10.1007/978-1-4471-3675-0
[4]  Dawson, T. H. (2000). Maximum Wave Crests in Heavy Seas. Journal of Offshore Mechanics and Arctic Engineering-Transactions of the AMSE, 122, 222-224.
https://doi.org/10.1115/1.1287039
[5]  Embrechts, P., Kluppelberg, C., & Mikosch, T. (1997). Modeling Extremal Events for Insurance and Finance. Springer-Verlag.
https://doi.org/10.1007/978-3-642-33483-2
[6]  Harris, R. I. (2001). The Accuracy of Design Values Predicted from Extreme Value Analysis. Journal of Wind Engineering and Industrial Aerodynamics, 89, 153-164.
https://doi.org/10.1016/S0167-6105(00)00060-X
[7]  Katz, R. W, Parlange, M. B., & Naveau, P. (2002). Statistics of Extremes in Hydrology. Advances in Water Resources, 25, 1287-304.
https://doi.org/10.1016/S0309-1708(02)00056-8
[8]  Onwuegbuche, F. C., Kenyatta, A. B., Affognon, S. B., Enock, E. P., & Akinade, M. O. (2019). Application of Extreme Value Theory in Predicting Climate Change Induced Extreme Rainfall in Kenya. International Journal of Statistics and Probability, 8, 85-94.
https://doi.org/10.5539/ijsp.v8n4p85
[9]  Ren, H. L., Wang, R., Zhai, P., Ding, Y., & Lu, B. (2017). Upper-Ocean Dynamical Features and Prediction of the Super El Nino in 2015/16: A Comparison with the Cases in 1982/83 and 1997/98. Journal of Meteorological Research, 31, 278-294.
https://doi.org/10.1007/s13351-017-6194-3
[10]  Roberts, S. J. (2000). Extreme Value Statistics for Novelty Detection in Biomedical Data Processing. IEE Proceedings—Science Measurement and Technology, 147, 363-367.
https://doi.org/10.1049/ip-smt:20000841
[11]  Saji, N. H., Jin, D., & Thilakan, V. (2018). A Model for Super El Ninos. Nature Communications, 9, 2528-2515.
https://doi.org/10.1038/s41467-018-04803-7
[12]  Shiozaki, M., & Enomoto, T. (2020). Comparison of the 2015/16 El Niño with the Two Previous Strongest Events. SOLA, 16, 12-16.
https://doi.org/10.2151/sola.2020-003
[13]  Thomas, M., Lemaitre, M., Wilson, M. L., Vibound, C., Yordanov, Y., Wackernagel, H., & Carrat, F. (2016). Applications of Extreme Value Theory in Public Health. PLOS ONE, 11, e0159312.
https://doi.org/10.1371/journal.pone.0159312
[14]  Yin, Y., Xu, C. Y., Chen, H., Li, L., Li, H., & Xu, H. (2014). Modeling the Extreme Precipitation Using the Generalized Extreme Value Models with Southern Oscillation Index (SOI) as a Covariate in the Beas Basin, India. Geophysical Research Abstracts, 16, EGU2014-6751.
[15]  Zhang, X., Wang, J., Zwiers, F. W., & Groisman, P. Y. (2010). The Influence of Large Scale Climate Variability on Winter Maximum Daily Precipitation over North America. Journal of Climate, 23, 2902-2915.
https://doi.org/10.1175/2010JCLI3249.1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133