全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

硅薄膜及其光学特性研究进展
Research Progress of Silicon Thin Films and Their Optical Properties

DOI: 10.12677/AMC.2023.111003, PP. 18-31

Keywords: 硅薄膜,薄膜制备,光伏;Silicon Thin Film, Thin Film Preparation, Photovoltaic

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文主要介绍了硅薄膜的分类,及其硅薄膜制备的研究现况及进展。硅是最重要的半导体材料之一,如今在太阳能电池和集成电路领域有着广泛的应用,硅膜可分为非晶硅、多晶硅、单晶硅膜三类。非晶硅薄膜因其特殊的物性、易制备等特点,在大面积太阳能电池、大屏幕LCD、平板电视等领域有着广阔的应用前景,是目前国际上最受关注的领域之一。近年来,随着薄膜制造工艺的进步,氢化微晶硅、多晶硅等已被成功制造出来。该类薄膜具有比非晶硅、单晶硅更好的性能,而且在很低的温度下大面积生长,易于掺杂,且导电性能好,因此在太阳能电池、薄膜晶体管(TFT)等领域有重要的应用前景。
This paper introduces the classification of silicon films, and the current status and progress of re-search on their preparation. Silicon is one of the most important semiconductor materials and today has a wide range of applications in solar cells and integrated circuits. Silicon films can be classified into three categories: amorphous silicon, polycrystalline silicon and monocrystalline silicon films. Amorphous silicon films have broad application prospects in large area solar cells, large screen LCDs, flat panel TVs and other fields due to their special physical properties and easy preparation, and are currently one of the most popular areas of international attention. In recent years, with the advancement of thin film manufacturing process, hydrogenated microcrystalline silicon and poly-crystalline silicon have been successfully manufactured. The thin film has better performance than amorphous silicon, monocrystalline silicon, and it grows in a large area at a very low temperature, is easy to doping, and has good electrical conductivity, so in the solar cell, thin film transistor (TFT) and other fields has important application prospects.

References

[1]  李保强, 陈金, 刘文迪, 等. 半导体用钨硅薄膜的制备技术及应用研究进展[J]. 中国钨业, 2020, 35(3): 48-55.
[2]  肖华鹏. 基于等离激元结构柔性非晶硅薄膜太阳能电池的研究[D]: [硕士学位论文]. 南京: 南京理工大学, 2015: 2-13.
[3]  于世海, 黄思佳. “一带一路”倡议下我国光伏产品出口策略与前景研究[J]. 广西质量监督导报, 2021(2): 191-195.
[4]  刘莉. PECVD制备掺杂纳晶硅薄膜的性能研究[D]: [硕士学位论文]. 长沙: 湖南师范大学, 2016: 1-10.
[5]  唐彬, 袁明权, 彭勃, 等. 单晶硅各向异性湿法刻蚀的研究进展[J]. 微纳电子技术, 2013, 50(5): 327-333.
[6]  孙乃忠, 秦虎, 刘树军. 太阳能电池材料发展和前景[J]. 新材料产业, 2014(8): 56-59.
[7]  陆学斌. 多晶硅纳米薄膜压阻特性及其压力传感器应用研究[D]: [博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2010: 1-20.
[8]  Merkel, J.J., Sontheimer, T., Rech, B., et al. (2013) Directional Growth and Crystallization of Silicon Thin Films Prepared by Electron-Beam Evaporation on Oblique and Textured Surfaces. Journal of Crystal Growth, 367, 126-130.
https://doi.org/10.1016/j.jcrysgro.2012.12.037
[9]  王圣旭, 游藩, 孙启利, 等. 单晶硅与非晶硅薄膜光伏组件的光电特性研究[J]. 电源技术, 2015, 39(12): 2665-2668.
[10]  徐慢, 夏冬林, 杨晟, 等. 薄膜太阳能电池[J]. 材料导报, 2006(9): 109-111.
[11]  严银. CVD法硅薄膜制备工艺及硅薄膜与PDMS基底键合的探究[D]: [硕士学位论文]. 扬州: 扬州大学, 2020: 1-15.
[12]  王锐, 薛俊明, 俞远高, 等. NIP型非晶硅薄膜太阳能电池的研究[J]. 光电子激光, 2007(5): 511-514.
[13]  张晓丹, 张发荣, 赵颖, 等. 1 nm/s高速率微晶硅薄膜的制备及其在太阳能电池中的应用[J]. 半导体学报, 2007, 28(2): 209-212.
[14]  贾士亮, 张维佳, 刘浩, 等. 纳米硅薄膜太阳能电池的绒面结构研究[J]. 电子元件与材料, 2009, 28(3): 30-34.
[15]  Chen, T., Wang, H., Huang, Y., et al. (2009) Microcrystalline Silicon Carbide Thin Films Grown by HWCVD at Different Filament Temperatures and Their Application in n-i-p Microcrystalline Silicon Solar Cells. Thin Solid Films, 517, 3513-3515.
https://doi.org/10.1016/j.tsf.2009.01.029
[16]  Zhang, X.D., et al. (2014) Microcrystalline Sili-con-Germanium Solar Cells with Spectral Sensitivities Extending into 1300 nm. Solar Energy Materials and Solar Cells: An In-ternational Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion, 126, 6-10.
https://doi.org/10.1016/j.solmat.2014.03.029
[17]  李旺, 刘石勇, 刘路, 等. PI衬底n-i-p结构非晶硅薄膜太阳能电池的制备[J]. 人工晶体学报, 2015, 44(9): 2350-2353, 2358.
[18]  Cao, Y., Zhou, J., Wang, Y., et al. (2015) Band Gap Grading in Microcrystalline Silicon Germanium Thin Film Solar Cells. Journal of Alloys & Compounds, 632, 456-459.
https://doi.org/10.1016/j.jallcom.2015.01.224
[19]  黄建华, 刘怀周. ITO/BZO复合薄膜制备及在非晶硅薄膜太阳能电池的应用[J]. 人工晶体学报, 2016, 45(2): 515-519.
[20]  陈科, 吴睿, 郑红梅, 等. 余弦光栅硅薄膜太阳能电池光吸收分析[J]. 光子学报, 2017, 46(4): 47-53.
[21]  唐鹿, 薛飞, 郭鹏, 等. 氢退火的BZO前电极对非晶硅薄膜太阳能电池性能的影响[J]. 发光学报, 2018, 39(6): 838-843.
[22]  肖亮, 朱群志. 嵌入金属纳米颗粒提高晶硅薄膜太阳能电池吸收率[J]. 光散射学报, 2020, 32(3): 266-273.
[23]  许烁烁, 彭宜昌, 杨彬, 等. 一种多层非晶硅薄膜的制备方法及太阳能电池[P]. 中国, CN202111152795.4. 2022.
[24]  Chapin, D.M., Fuller, C.S. and Pearson, G.L. (1954) A New Silicon p-n Junction Pho-tocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics, 25, 676-677.
https://doi.org/10.1063/1.1721711
[25]  Vetterl, O., Finger, F., Carius, R., et al. (2000) Intrinsic Microcrystalline Silicon: A New Material for Photovoltaics. Solar Energy Materials & Solar Cells, 62, 97-108.
https://doi.org/10.1016/S0927-0248(99)00140-3
[26]  Takatsuka, H., Yamauchi, Y., Kawamura, K., et al. (2006) World’s Largest Amorphous Silicon Photovoltaic Module. Thin Solid Films, 506, 13-16.
https://doi.org/10.1016/j.tsf.2005.08.011
[27]  Kim, S.-K., et al. (2008) Effect of Hydrogen Dilution on Intrinsic a-Si: H Layer between Emitter and Si Wafer in Silicon Heterojunction Solar Cell. Solar Energy Materials & Solar Cells, 92, 298-301.
https://doi.org/10.1016/j.solmat.2007.09.007
[28]  Villar, F., Antony, A., Escarré, J., et al. (2009) Amorphous Silicon Thin Film Solar Cells Deposited Entirely by Hot-Wire Chemical Vapour Deposition at Low Temperature (150 ?C). Thin Solid Films, 517, 35-75.
https://doi.org/10.1016/j.tsf.2009.01.074
[29]  Smirnov, V., Das, C., Melle, T., et al. (2009) Improved Homogeneity of Microcrystalline Absorber Layer in Thin-Film Silicon Tandem Solar Cells. Materials Science & Engineering B, 159, 44-47.
https://doi.org/10.1016/j.mseb.2008.10.050
[30]  Sobajima, Y., Nishino, M., Fukumori, T., et al. (2009) Solar Cell of 6.3% Efficiency Employing High Deposition Rate (8nm/s) Microcrystalline Silicon Photovoltaic Layer. Solar Energy Materials and Solar Cells, 93, 980-983.
https://doi.org/10.1016/j.solmat.2008.11.042
[31]  Ishizaki, K., De Zoysa, M., Tanaka, Y., et al. (2015) Improved Effi-ciency of Ultra-Thin c-Si Solar Cells with Photonic-Crystal Structures. Optics Express, 23, 1040-1050.
https://doi.org/10.1364/OE.23.0A1040
[32]  Pham, D.P., Kim, S., Park, J., et al. (2016) Silicon Germanium Active Layer with Graded Band Gap and c-Si: H Buffer Layer for High Efficiency Thin Film Solar Cells. Materials Science in Semiconductor Processing, 56, 183-188.
https://doi.org/10.1016/j.mssp.2016.08.011
[33]  De Zoysa, M., Ishizaki, K., Tanaka, Y., et al. (2017) Enhanced Efficiency of Ultrathin (Similar to 500 nm)-Film Microcrystalline Silicon Photonic Crystal Solar Cells. Applied Physics Express, 10, Article ID: 012302.
https://doi.org/10.7567/APEX.10.012302
[34]  Rajanna, P.M., Gilshteyn, E., Yagafarov, T., et al. (2018) Enhanced Effi-ciency of Hybrid Amorphous Silicon Solar Cells Based on Single-Walled Carbon Nanotubes and Polymer Composite Thin Film. Nanotechnology, 29, Article ID: 105404.
https://doi.org/10.1088/1361-6528/aaa647
[35]  Lee, C.L., Goh, W.S., Chee, S.Y., et al. (2018) Augmentation of Power Conversion Efficiency of Amorphous Silicon Solar Cell Employing Poly(methyl methacrylate-co-acrylic acid) Nanospheres Encapsulated with Gold Nanoparticles. Journal of Materials Science, 53, 5183-5193.
https://doi.org/10.1007/s10853-017-1889-5
[36]  Kwon, J.D., Yang, J., Park, J.S., et al. (2018) Effects of Helium Con-centration on Microcrystalline Silicon Thin Film Solar Cells Deposited by Atmospheric-Pressure Plasma Deposition at 13.3kPa. Thin Solid Films, 650, 32-36.
https://doi.org/10.1016/j.tsf.2018.01.061
[37]  Sai, H., Matsui, T., Kumagai, H., et al. (2018) Thin-Film Microcrystalline Silicon Solar Cells: 11.9% Efficiency and Beyond. Applied Physics Express, 11, Article ID: 022301.
https://doi.org/10.7567/APEX.11.022301
[38]  Khezripour, Z., Mahani, F.F. and Mokhtari, A. (2020) Performance Im-provement of Thin-Film Silicon Solar Cells Using Transversal and Longitudinal Titanium Nitride Plasmonic Nanogratings. Op-tical Materials, 99, Article ID: 109532.
https://doi.org/10.1016/j.optmat.2019.109532
[39]  Garud, S., Trinh, C.T., Abou-Ras, D., et al. (2020) Toward High Solar Cell Efficiency with Low Material Usage: 15% Efficiency with 14 μm Polycrystalline Silicon on Glass. Solar RRL, 4, Article ID: 2000058.
https://doi.org/10.1002/solr.202000058
[40]  Rassekh, M., Shirmohammadi, R., Ghasempour, R., et al. (2021) Effect of Plasmonic Aluminum Nanoparticles Shapes on Optical Absorption Enhancement in Silicon Thin-Film Solar Cells. Physics Let-ters A, 408, Article ID: 127509.
https://doi.org/10.1016/j.physleta.2021.127509
[41]  Isoe, W.M., et al. (2023) Optical Modelling of TCO Based FTO/TiO2 Multilayer Thin Films and Simulation in Hydrogenated Amorphous Silicon Solar Cell. Scientific African, 20, e01678.
[42]  Kant, N. and Singh, P. (2022) Review of Next Generation Photovoltaic Solar Cell Technology and Comparative Materialistic Devel-opment. Materials Today: Proceedings, 56, 3460-3470.
https://doi.org/10.1016/j.matpr.2021.11.116
[43]  Kondo, M. and Matsuda, A. (2001) Low Temperature Growth of Microcrystalline Silicon and Its Application to Solar Cells. Thin Solid Films, 383, 1-6.
https://doi.org/10.1016/S0040-6090(00)01789-2
[44]  Han, G., Zhang, S., Boix, P.P., et al. (2017) Towards High Efficiency Thin Film Solar Cells. Progress in Materials Science, 87, 246-291.
https://doi.org/10.1016/j.pmatsci.2017.02.003
[45]  Zeman, M. (2006) Advanced Amorphous Silicon Solar Cell Technolo-gies. In: Poortmans, J. and Arkhipov, V., Eds., Thin Film Solar Cells: Fabrication, Characterization and Applications, John Wiley & Sons, Ltd, Hoboken, 173-236.
https://doi.org/10.1002/0470091282.ch5
[46]  俞叶, 赵占平. 国内PVD技术应用与研究现状[J]. 中小企业管理与科技, 2017(4): 183-184.
[47]  Ehara, T., Ikoma, T., Akiyama, K., et al. (2000) Electron Paramagnetic Resonance Studies on Mi-crocrystalline Silicon Prepared by Sputtering Method. Journal of Applied Physics, 88, 1698-1700.
https://doi.org/10.1063/1.373875
[48]  Gao, J., Lin, Z., Xiao, J., et al. (2012) Nanocrystalline Silicon Thin Films Grown by a MF Twin Magnetron Sputtering System with Two Solenoid Coils. Materials Letters, 68, 367-369.
https://doi.org/10.1016/j.matlet.2011.11.009
[49]  Amrani, R., Benlekehal, D., Baghdad, R., et al. (2008) Low-Temperature Growth of Nanocrystalline Silicon Films Prepared by RF Magnetron Sputtering: Structural and Optical Studies. Journal of Non-Crystalline Solids, 354, 2291-2295.
https://doi.org/10.1016/j.jnoncrysol.2007.10.044
[50]  Bouizem, Y., Kefif, K., Sib, J.D., et al. (2012) Optical and Structural Properties of Hydrogenated Silicon Films Prepared by rf-Magnetron Sputtering at Low Growth Temperatures: Study as Function of Argon Gas Dilution. Journal of Non-Crystalline Solids, 358, 854-859.
https://doi.org/10.1016/j.jnoncrysol.2011.12.077
[51]  Kim, W., Lee, J., Lee, J., et al. (2004) Structural Changes in Nano-crystalline Silicon Deposited by rf-Magnetron Sputtering. Applied Physics A, 79, 1813-1817.
https://doi.org/10.1007/s00339-003-2178-5
[52]  袁珂, 郝会颖, 黄强, 等. 射频磁控溅射硅薄膜的制备与结构研究[J]. 化工新型材料, 2009, 37(3): 69-71.
[53]  Cherng, J.S., Chang, S.H. and Hong, S.H. (2012) Effects of Hydrogen Atmos-phere on Pulsed-DC Sputtered Nanocrystalline Si: H Films. Materials Research Bulletin, 47, 3036-3039.
https://doi.org/10.1016/j.materresbull.2012.04.108
[54]  Cherng, J.S., Chang, S.H. and Hong, S.H. (2013) Nanocrystalline Silicon Films Directly Made by Pulsed-DC Magnetron Sputtering. Surface & Coatings Technology, 229, 18-21.
https://doi.org/10.1016/j.surfcoat.2012.08.057
[55]  Joo, J. (2000) Ionization Enhancement in Ionized Magnetron Sputter Deposition. Journal of Vacuum Science & Technology A Vacuum Surfaces & Films, 18, 23-29.
https://doi.org/10.1116/1.582153
[56]  Matsumura, H.M.H. (1991) Formation of Polysilicon Films by Catalytic Chemical Vapor Deposition (Cat-CVD) Method. Japanese Journal of Applied Physics, 30, L1522.
https://doi.org/10.1143/JJAP.30.L1522
[57]  Konagai, M., Tsushima, T., Kim, M.K., et al. (2001) High-Rate Deposition of Silicon Thin-Film Solar Cells by the Hot-Wire Cell Method. Thin Solid Films, 395, 152-156.
https://doi.org/10.1016/S0040-6090(01)01244-5
[58]  Feng, Y., Zhu, M., Liu, F., et al. (2001) Structural Evaluation of Polycrystalline Silicon Thin Films by Hot-Wire-Assisted PECVD. Thin Solid Films, 395, 213-216.
https://doi.org/10.1016/S0040-6090(01)01270-6
[59]  Hamers, E., Morral, A., Niikura, C., et al. (2000) Contribution of Ions to the Growth of Amorphous, Polymorphous, and Microcrystalline Silicon Thin Films. Journal of Applied Physics, 88, 3674-3688.
https://doi.org/10.1063/1.1289523
[60]  Kondo, M., Yamasaki, S. and Matsuda, A. (2000) Microscopic Structure of De-fects in Microcrystalline Silicon. Journal of Non-Crystalline Solids, 266, 544-547.
https://doi.org/10.1016/S0022-3093(99)00870-4

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133