|
基于深度学习的输电线路缺陷检测研究综述
|
Abstract:
输电线路是电力系统的重要组成部分,对电力系统的正常运行起到了至关重要的作用。传统的人工巡检已经无法满足电力系统对于输电线路安全可靠运行的要求。随着科技的不断发展,基于深度学习的目标检测算法凭借良好的检测性能被越来越多领域所应用,依靠深度学习的目标检测算法在极大程度上提高了输电线路缺陷检测的检测速度和准确性。首先对输电线路缺陷深度学习目标检测算法的发展历程进行介绍;其次针对输电线路缺陷检测的研究难点进行分析;最后对输电线路缺陷检测的改进思路进行了整理,主要从小目标检测的算法优化、复杂背景下的算法优化、边缘网络轻量化的算法优化三部分进行介绍;并对输电线路缺陷检测进行总结与展望。
Transmission lines are an important part of the power system and play a vital role in the normal operation of the power system. The traditional manual inspection has been unable to meet the requirements of the power system for the safe and reliable operation of transmission lines. With the continuous development of science and technology, the target detection algorithm based on deep learning has been applied in more and more fields by virtue of its good detection performance, and the target detection algorithm relying on deep learning has greatly improved the detection speed and accuracy of transmission line defect detection. Firstly, the development process of deep learning object detection algorithm for transmission line defects is introduced; secondly, the research difficulties of transmission line defect detection are analyzed; finally, the improvement ideas of transmission line defect detection are organized, mainly in three parts: algorithm optimization from small target detection, algorithm optimization in complex context, and algorithm optimization for edge network lightweighting; and the transmission line defect detection is summarized and prospected.
[1] | 周仿荣, 张辉, 者梅林, 等. 一种基于数据增强增广和神经网络的输电导线及其缺陷检测方法[J]. 南方电网技术, 2022, 16(9): 131-142. |
[2] | 朱凯, 姜文东, 方玉群, 等. 基于改进Hough变换的输电线路带电作业机器人检测方法[J]. 制造业自动化, 2022, 44(6): 186-189+203. |
[3] | Girshick, R., Donahue, J., Darrell, T., et al. (2014) Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, 23-28 June 2014, 580-587. https://doi.org/10.1109/CVPR.2014.81 |
[4] | He, K., Zhang, X., Ren, S., et al. (2015) Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 1904-1916.
https://doi.org/10.1109/TPAMI.2015.2389824 |
[5] | Girshick, R. (2015) Fast R-CNN. Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, 7-13 December 2015, 1440-1448. https://doi.org/10.1109/ICCV.2015.169 |
[6] | Ren, S., He, K., Girshick, R., et al. (2015) Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intel-ligence, 39, 1137-1149. |
[7] | 汤踊, 韩军, 魏文力, 等. 深度学习在输电线路中部件识别与缺陷检测的研究[J]. 电子测量技术, 2018, 41(6): 60-65. https://doi.org/10.19651/j.cnki.emt.1701266 |
[8] | 武学良. 嵌入双注意力机制的FasterR-CNN航拍输电线路螺栓缺陷检测[D]: [硕士学位论文]. 北京: 华北电力大学, 2021. https://doi.org/10.27139/d.cnki.ghbdu.2021.000005 |
[9] | 吴军, 白梁军, 董晓虎, 等. 基于Cascade R-CNN算法的输电线路小目标缺陷检测方法[J]. 电网与清洁能源, 2022, 38(4): 19-27+36. |
[10] | Liu, W., Anguelov, D., et al. (2016) SSD: Single Shot MultiBox Detector. In: Leibe, B., Matas, J., Sebe, N. and Welling, M., Eds., ECCV 2016: Computer Vision—ECCV 2016, Lecture Notes in Computer Science, Vol. 9905, Springer, Cham, 21-37. https://doi.org/10.1007/978-3-319-46448-0_2 |
[11] | 李瑞生, 张彦龙, 翟登辉, 等. 基于改进SSD的输电线路销钉缺陷检测[J]. 高电压技术, 2021, 47(11): 3795-3802.
https://doi.org/10.13336/j.1003-6520.hve.20201650 |
[12] | Redmon, J., Divvala, S., Girshick, R., et al. (2016) You Only Look Once: Unified, Real-Time Object Detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 27-30 June 2016, 779-788.
https://doi.org/10.1109/CVPR.2016.91 |
[13] | Szegedy, C., Liu, W., Jia, Y., et al. (2015) Going Deeper with Con-volutions. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, 7-12 June 2015, 1-9. https://doi.org/10.1109/CVPR.2015.7298594 |
[14] | Redmon, J. and Farhadi, A. (2017) YOLO9000: Better, Faster, Stronger. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 21-26 July 2017, 7263-7271.
https://doi.org/10.1109/CVPR.2017.690 |
[15] | Redmon, J. and Farhadi, A. (2018) Yolov3: An Incremental Im-provement. (Preprint) |
[16] | Alexey, B., Wang, C.Y. and Hong, Y. (2020) Yolov4: Optimal Speed and Accuracy of Ob-ject Detection. (Preprint) |
[17] | Wang, C.Y., Liao, H.Y.M., Wu, Y.H., et al. (2020) CSPNet: A New Backbone that Can Enhance Learning Capability of CNN. Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, 14-19 June 2020, 1571-1580. https://doi.org/10.1109/CVPRW50498.2020.00203 |
[18] | Jocher, G., Stoken, A., Borovec, J., et al. (2020) Utralyt-ics/YOLOv5: V3.1—Bug Fixes and Performance Improvements. Zenodo. https://doi.org/10.5281/zenodo.4154370 |
[19] | Wang, C.Y., Bochkovskiy, A. and Liao, H.Y.M. (2022) YOLOv7: Trainable Bag of Freebies Sets New State of the Art for Real Time Object Detectors. https://arxiv.org/abs/2207.02696 |
[20] | 肖粲俊, 潘睿志, 李超, 等. 基于改进YOLOv5s绝缘子缺陷检测技术研究[J]. 电子测量技术, 2022, 45(24): 137-144. https://doi.org/10.19651/j.cnki.emt.2210050 |
[21] | 唐靓, 余明慧, 武明虎, 等. 基于改进YOLOv5的绝缘子缺陷检测算法[J]. 华中师范大学学报(自然科学版), 2022, 56(5): 771-780. https://doi.org/10.19603/j.cnki.1000-1190.2022.05.006, |
[22] | 宋智伟, 黄新波, 纪超, 等. 基于Flexible YOLOv7的输电线路绝缘子缺陷检测和故障预警方法[J/OL]. 高电压技术: 1-16. https://doi.org/10.13336/j.1003-6520.hve.20221693, 2023-05-05. |
[23] | 徐文校, 张银胜, 王东平, 等. 改进YOLOX算法的输电线路关键部件及缺陷检测[J]. 无线电工程, 2023, 53(1): 188-198. |
[24] | 蔡文彪, 李永锋, 吴怀诚, 张嘉杨, 董云鹏. 基于改进Faster RCNN模型的输电线缺陷检测方法[J]. 信息技术, 2023, 47(1): 148-153. |
[25] | 刘兰兰, 万旭东, 汪志刚, 等. 基于超分辨率重建与多尺度特征融合的输电线路缺陷检测方法[J]. 电子测量与仪器学报, 2023, 37(1): 130-139. |
[26] | Ge, Z., Liu, S., Wang, F., et al. (2021) YOLOX: Exceeding YOLO Series in 2021. (Preprint) |
[27] | Zheng, Z.H., Wang, P., Liu, W., et al. (2020) Distance-loU Loss: Faster and Better Learning for Bounding Box Regression. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 12993-13000.
https://doi.org/10.1609/aaai.v34i07.6999 |
[28] | 叶翔, 孙嘉兴, 甘永叶, 等. 改进YOLOv3模型在无人机巡检输电线路部件缺陷检测中的应用研究[J]. 电测与仪表, 2023, 60(5): 85-91. |
[29] | 刘开培, 李博强, 秦亮, 等. 深度学习目标检测算法在架空输电线路绝缘子缺陷检测中的应用研究综述[J/OL]. 高电压技术: 1-12. https://doi.org/10.13336/j.1003-6520.hve.20220273, 2022-09-16. |
[30] | 戚银城, 武学良, 赵振兵, 等. 嵌入双注意力机制的Faster R-CNN航拍输电线路螺栓缺陷检测[J]. 中国图象图形学报, 2021, 26(11): 2594-2604. |
[31] | 赵霖, 王素珍, 邵明伟, 等. 基于改进YOLOv5的输电线路鸟巢缺陷检测方法[J]. 电子测量技术, 2023, 46(3): 157-165. |
[32] | 孙丰刚, 王云露, 兰鹏, 等. 基于改进YOLOv5s和迁移学习的苹果果实病害识别方法[J]. 农业工程学报, 2022, 38(11): 171-179. |
[33] | 王宇博, 尚军利, 张烨, 等. 基于改进YOLOv7的实时输电导线缺陷检测方法[J/OL]. 南方电网技术: 1-8.
http://kns.cnki.net/kcms/detail/44.1643.TK.20230210.1523.016.html, 2023-02-10. |
[34] | Tan, M., Pang, R. and Le, Q.V. (2020) Efficientdet: Scalable and Efficient Object Detection. Proceedings of the 2020 IEEE/CVF Conference on Comput-er Vision and Pattern Recognition, Seattle, 13-19 June 2020, 10781-10790.
https://doi.org/10.1109/CVPR42600.2020.01079 |
[35] | 刘闽, 李喆, 李曜丞, 等. 基于重参数化YOLOv5的输电线路缺陷边缘智能检测方法[J/OL]. 高电压技术: 1-11.
https://doi.org/10.13336/j.1003-6520.hve.20220861, 2022-09-28. |
[36] | 党宏社, 薛萌, 郭琴. 基于改进的YOLOv4绝缘子掉片故障检测方法[J]. 电瓷避雷器, 2022(1): 211-218. |
[37] | 马富齐, 王波, 董旭柱, 等. 面向输电线路覆冰厚度辨识的多感受野视觉边缘智能识别方法研究[J]. 电网技术, 2021, 45(6): 2161-2169. |