|
基于SAW_RFID回波信号数字化研究
|
Abstract:
随着声表面波射频识别技术(SAW-RFID)的发展,实现远距离、高分辨率的SAW标签探测成了整个系统的关键因素。针对此问题,将雷达中常用的线性调频脉冲压缩方案用于本系统,来对回波信号进行数字化处理。在matlab中通过加窗及算法处理,做了仿真分析,将脉冲压缩信号的主副瓣比提高了26 dB。其次在带通采样原理下,建立FPGA+AD的硬件采样系统,将回波信号送入FPGA内进行数字下变频,同时将数控振荡器(NCO)硬件流水线结构进行优化,减少了20%系统资源,信号处理延时仅为8.3 us。最后与matlab进行比对,验证此套系统的可行性,为SAW-RFID技术提供了更多的可能。
With the development of surface acoustic wave radio frequency identification (SAW-RFID), long- distance, high-resolution SAW tag detection has become a key factor in the entire system. In order to solve this problem, the chirp pulse compression scheme commonly used in radar is used in this system to digitize the echo signal. In MATLAB, through the window addition and algorithm processing, the simulation analysis was carried out, and the main and secondary lobe ratio of the pulse compression signal was increased by 26 dB. Secondly, under the principle of band pass sampling, a hardware sampling system of FPGA + AD is established, and the echo signal is sent into the FPGA for digital down conversion, and the hardware pipeline structure of the numerical control oscillator (NCO) is optimized, which reduces the system resources by 20% and the signal processing delay is only 8.3 us. Finally, it is compared with MATLAB to verify the feasibility of this system, which provides more possibilities for SAW-RFID technology.
[1] | 曾重阳. 基于SAW传感器的高速RFID阅读器设计与分析[D]: [硕士学位论文]. 秦皇岛: 燕山大学, 2017. |
[2] | 潘虹芝, 曹健, 齐梦珂, 程一民, 曹亮, 牟笑静. 极端环境下声表面波压力传感器研究进展[J]. 压电与声光, 2021, 43(3): 306-312. |
[3] | 王毅坚, 薛蓄峰, 梁勇, 王文, 朱宸晖. 差分负载式无线无源声表面波应变传感器研究[J]. 压电与声光, 2018, 40(3): 374-378. |
[4] | Yang, P., Wu, W., Moniri, M. and Chibelushi, C.C. (2013) Efficient Object Localization Using Sparsely Distributed Passive RFID Tags. IEEE Transactions on Industrial Electronics, 60, 5914-5924.
https://doi.org/10.1109/TIE.2012.2230596 |
[5] | 赵钊, 高杨, 张树民. 高Q值声表面波谐振器研究进展[J]. 压电与声光, 2022, 44(6): 841-846. |
[6] | Chen, Z., Jia, H., Chen, T., Wang, X., Guo, J. and Cai, P. (2019) High-Speed Data Acquisition of the Reader of the SAW RFID System. IET Science, Measurement & Technology, 13, 1163-1169.
https://doi.org/10.1049/iet-smt.2019.0189 |
[7] | 阮静平, 史汝川, 杨扬, 韩韬. 基于SAW RFID系统的标签距离估计[J]. 系统工程与电子技术, 2019, 41(11): 2439-2445. |
[8] | Krishnamurthy, S., Atashbar, M.Z. and Bazuin, B.J. (2009) Burst Transceiver Unit for Wireless Passive SAW Sensing System. IEEE Transactions on Instrumentation and Measurement, 58, 3746-3753.
https://doi.org/10.1109/TIM.2009.2019707 |
[9] | 刘琳童. 线性调频信号脉冲压缩的FPGA实现[D]: [硕士学位论文]. 西安: 西安电子科技大学, 2009. |
[10] | 王晓迪, 余佩, 陈建臣. 基于FPGA和时域卷积实现线性调频信号脉冲压缩方法[J]. 通讯世界, 2017(15): 49-50. |
[11] | 张中前. 基于FPGA设计的功能验证技术[J]. 机电元件, 2012, 32(3): 28-31+44. |
[12] | 赵鹏, 程光, 赵德宇. 基于FPGA的高性能可编程数据平面研究综述[J/OL]. 软件学报: 1-25.
https://doi.org/10.13328/j.cnki.jos.006669, 2023-04-25. |
[13] | 丁筱. 线性调频脉冲压缩定距系统信号处理技术[D]: [硕士学位论文]. 南京: 南京理工大学, 2013. |
[14] | 陈艳霜. 基于FPGA的雷达中频信号预处理器的设计与实现[D]: [硕士学位论文]. 昆明: 云南大学, 2020.
https://doi.org/10.27456/d.cnki.gyndu.2020.002470 |
[15] | 周骏, 王冬华, 沈洋, 丁逊. 脉冲压缩距离副瓣抑制研究[J]. 雷达与对抗, 2022, 42(3): 25-27.
https://doi.org/10.19341/j.cnki.1009-0401.2022.03.006 |
[16] | 金德亚, 张玮. 线性调频脉冲压缩信号旁瓣抑制分析[J]. 舰船电子对抗, 2021, 44(3): 100-102+106.
https://doi.org/10.16426/j.cnki.jcdzdk.2021.03.021 |