|
基于改进狮群算法优化神经网络的糖尿病风险预测
|
Abstract:
糖尿病风险评估预测有助于早期发现糖尿病,降低发病率和并发症。针对糖尿病风险预测问题,提出一种基于改进狮群算法优化神经网络的糖尿病风险预测模型。引入非线性扰动因子改进狮群算法,使得算法既能加强全局优化能力,避免陷入局部最优,又能保证局部优化能力,提高算法的收敛速度。利用改进狮群算法(ILSO)的寻优能力优化神经网络的权重和偏置参数,建立基于ILSO-BP神经网络的预测模型。同时,采用少类样本合成过采样技术和递归特征消除方法对糖尿病数据进行预处理,提高模型预测能力。在真实糖尿病数据集PIMA上的实验结果表明,基于ILSO-BP神经网络的糖尿病风险预测模型,其预测性能优于基线模型,也优于基于遗传算法、鲸鱼优化、粒子群优化等算法优化的神经网络预测模型,对糖尿病风险具有良好预测能力,能够对糖尿病早期筛查起到辅助作用。
Diabetes risk prediction helps to detect diabetes early and reduce the incidence and complications. To address the problem of diabetes risk prediction, a diabetes risk prediction of the neural network based on improved lion swarm optimization (ILSO) algorithm is proposed. A nonlinear perturbation factor is introduced to improve the lion swarm algorithm, so that the algorithm enhances the global search capability to avoid falling into local optimum, and enhances the local search capability to provide convergence speed. The weights and bias parameters of the neural network are optimized by using the optimization ability of the Improved Lion Swarm optimization algorithm (ILSO), and a prediction model based on the ILSO-BP neural network is developed. Meanwhile, a synthetic minority oversampling technique and recursive feature elimination are employed for pre-processing diabetes data to enhance the model prediction capability. The experimental results on the real diabetes dataset PIMA show that the diabetes risk prediction based on ILSO-BP neural network has better prediction performance than the baseline models, and better than the neural network model based on genetic algorithm, whale optimization and particle swarm optimization. The proposed model has good prediction ability for diabetes risk and can play an auxiliary role in early diabetes screening.
[1] | International Diabetes Federation (2022) IDF Diabetes Atlas. 10th Edition, International Diabetes Federation.
https://diabetesatlas.org/ |
[2] | Sun, H., Saeedi, P., Karuranga, S., et al. (2022) IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Research and Clinical Practice, 183, 109-119.
https://doi.org/10.1016/j.diabres.2021.109119 |
[3] | Malviya, L., Mal, S., Lalwani, P., et al. (2021) Diabetes Classification Using Machine Learning and Deep Learning Models. In: Bajpai, M.K., Singh, K.K. and Giakos, G., Eds., Machine Vision and Augmented Intelligence—Theory and Applications, Lecture Notes in Electrical Engineering, Vol. 796, Springer, Singapore, 487-503.
https://doi.org/10.1007/978-981-16-5078-9_40 |
[4] | Tigga, N.P. and Garg, S. (2020) Prediction of Type 2 Diabetes Using Machine Learning Classification Methods. Procedia Computer Science, 167, 706-716. https://doi.org/10.1016/j.procs.2020.03.336 |
[5] | 张春富, 王松, 吴亚东, 王勇, 张红英. 基于GA-Xgboost模型的糖尿病风险预测[J]. 计算机工程, 2020, 46(3): 315-320. |
[6] | Ali, M., Haider, M.N., Lashari, S.A., et al. (2022) Stacking Classifier with Random Forest Functioning as a Meta Classifier for Diabetes Diseases Classification. Procedia Computer Science, 207, 3459-3468.
https://doi.org/10.1016/j.procs.2022.09.404 |
[7] | Kalagotla, S.K., Gangashetty, S.V. and Giridhar, K. (2021) A Novel Stacking Technique for Prediction of Diabetes. Computers in Biology and Medicine, 135, Article ID: 104554. https://doi.org/10.1016/j.compbiomed.2021.104554 |
[8] | Kumari, S., Kumar, D. and Mittal, M. (2021) An Ensemble Approach for Classification and Prediction of Diabetes Mellitus using Soft Voting Classifier. International Journal of Cognitive Computing in Engineering, 2, 40-46.
https://doi.org/10.1016/j.ijcce.2021.01.001 |
[9] | Alex, S.A., Nayahi, J.J.V., Shine, H., et al. (2022) Deep Convolutional Neural Network for Diabetes Mellitus Prediction. Neural Computing and Applications, 34, 1319-1327. https://doi.org/10.1007/s00521-021-06431-7 |
[10] | 李仪, 林建君, 朱习军. 基于改进DNN的糖尿病预测模型设计[J]. 计算机工程与设计, 2021, 42(5): 1418-1424. |
[11] | Joseph, L.P., Joseph, E.A. and Prasad, R. (2022) Explainable Diabetes Classification Using Hybrid Bayesian-Optimized TabNet Architecture. Computers in Biology and Medicine, 151, Article ID: 106178.
https://doi.org/10.1016/j.compbiomed.2022.106178 |
[12] | Liu, Y.C., Liu, W., Chen, H.R., et al. (2021) Graph Convolutional Network Enabled Two-Stream Learning Architecture for Diabetes Classification Based on Flash Glucose Monitoring Data. Biomedical Signal Processing and Control, 69, Article ID: 102896. https://doi.org/10.1016/j.bspc.2021.102896 |
[13] | Bala, M.K.P., Srinivasa, P.R., Nadesh, R.K. and Arivuselvan, K. (2020) Type 2: Diabetes Mellitus Prediction Using Deep Neural Networks Classifier. International Journal of Cognitive Computing in Engineering, 1, 55-61.
https://doi.org/10.1016/j.ijcce.2020.10.002 |
[14] | Kannadasan, K., Edla, D.R. and Venkatanareshbabu, K. (2019) Type 2: Diabetes Data Classification Using Stacked Autoencoders in Deep Neural Networks. Clinical Epidemiology and Global Health, 7, 530-535.
https://doi.org/10.1016/j.cegh.2018.12.004 |
[15] | 张鑫, 韦哲, 曹彤, 王能才, 张海英. 基于PSO-SVM的糖尿病并发症预测研究[J]. 中国医学装备, 2022, 19(2): 10-13. |
[16] | Karegowda, A.G., Manjunath, A.S. and Jayaram, M.A. (2011) Application of Genetic Algorithm Optimized Neural Network Connection Weights for Medical Diagnosis of PIMA Indians diabetes. International Journal on Soft Computing, 2, 15-23. https://doi.org/10.5121/ijsc.2011.2202 |
[17] | Aljarah, I., Faris, H. and Mirjalili, S. (2018) Optimizing Connection Weights in Neural Networks Using the Whale Optimization Algorithm. Soft Computing, 22, 1-15. https://doi.org/10.1007/s00500-016-2442-1 |
[18] | Si, T., Bagchi, J. and Miranda, P.B.C. (2022) Artificial Neural Network Training Using Metaheuristics for Medical Data Classification: An Experimental Study. Expert Systems with Applications, 193, Article ID: 116423.
https://doi.org/10.1016/j.eswa.2021.116423 |
[19] | 刘生建, 杨艳, 周永权. 一种群体智能算法——狮群算法[J]. 模式识别与人工智能, 2018, 31(5): 431-441. |
[20] | Chawla, N.V., Bowyer, K.W., Hall, L.O. and Kegelmeyer, W.P. (2011) SMOTE: Synthetic Minority Over-Sampling Technique. Journal of Arti?cial Intelligence Research, 16, 321-357. https://doi.org/10.1613/jair.953 |
[21] | Mundra, P.A. and Rajapakse, J.C. (2010) SVM-RFE with MRMR Filter for Gene Selection. IEEE Transactions on NanoBioscience, 9, 31-77. https://doi.org/10.1109/TNB.2009.2035284 |
[22] | https://aistudio.baidu.com/aistudio/datasetdetail/107922/0 |
[23] | Daho, M.E.H., Settouti, N., Lazouni, M.E.A. and Chikh, M.A. (2013) Recognition of Diabetes Disease Using a New Hybrid Learning Algorithm for NEFCLASS. Proceedings of IEEE Conference on 8th International Workshop on Systems, Signal Processing and Their Applications (WoSSPA 2013), Algiers, 12-15 May 2013, 239-243. |
[24] | Gorza?czany, M.B. and Rudziński, F. (2017) Interpretable and Accurate Medical Data Classification—A Multi-Objective Genetic-Fuzzy Optimization Approach. Expert Systems with Applications, 71, 26-39.
https://doi.org/10.1016/j.eswa.2016.11.017 |
[25] | Cheruku, R., Edla, D.R., Kuppili, V. and Dharavath, R. (2018) RST-BatMiner: A Fuzzy Rule Miner Integrating Rough Set Feature Selection and Bat Optimization for Detection of Diabetes Disease. Applied Soft Computing, 67, 764-780.
https://doi.org/10.1016/j.asoc.2017.06.032 |