全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进Yolov5航拍图像目标检测
Target Detection Based on Improved Yolov5 Aerial Image

DOI: 10.12677/SEA.2023.123045, PP. 455-462

Keywords: 目标检测,注意力机制,Mosaic数据增强,YOLOv5
Target Detection
, Attention Mechanism, Mosaic Data Enhancement, YOLOv5

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文针对航拍图像检测中可提取目标特征少、小目标多导致检测精度低的问题,提出了一种基于原始YOLOv5算法的改进目标检测算法。首先,将CBAM注意力机制部署到原始YOLOv5的特征提取和特征融合网络的C3模块中,以提升主干网络中网络局部特征捕获与融合能力,其次,针对在不断采样过程中导致浅层次特征信息丢失的问题,在检测头部分,增加了一个检测头,用于检测小目标。最后,对原始YOLOv5的Mosaic数据增强方式进行改进,将4张图片拼接改为9张图片拼接,然后根据拼接图片的矩形面积对灰色背景进行裁剪,加快模型收敛,提高训练效率,在不增加模型计算量的前提下,改善背景复杂等问题。本文使用VisDrone2019数据集,并基于改进的算法与原始算法分别进行了实验,结果表明本文的算法能够针对航拍图像目标进行有效的检测。
In this paper, based on the original YOLOv5 algorithm, an improved target detection algorithm is proposed to solve the problem of low detection accuracy caused by few extracted target features and many small targets in aerial image detection. Firstly, CBAM attention mechanism is deployed in the C3 module of the original YOLOv5 feature extraction and feature fusion network to improve the local feature capture and fusion capability in the backbone network. Secondly, to solve the problem that shallow level feature information is lost in the process of continuous sampling, a detection header is added to the detection header, used to detect small targets. Finally, the Mosaic data enhancement method of the original YOLOv5 was improved, and the Mosaic of 4 images was changed to 9 images, and then the gray background was cropped according to the rectangular area of the Mosaic images, In this way, the model convergence can be accelerated, training efficiency can be improved and complex background can be improved without increasing the calculation amount of the model. In this paper, we use VisDrone2019 data set to carry out experiments based on the improved algorithm and the original algorithm respectively. The results show that the proposed algorithm can effectively detect aerial image targets.

References

[1]  汪鹏, 辛雪静, 王利琴, 刘瑞. 基于YOLOv3的光学遥感图像目标检测算法[J]. 激光与光电子学进展, 2021, 58(20): 509-517.
[2]  赵文清, 康怿瑾, 赵振兵, 翟永杰. 改进YOLOv5s的遥感图像目标检测[J]. 智能系统学报, 2023, 18(1): 86-95.
[3]  李坤亚, 欧鸥, 刘广滨, 于泽峰, 李林. 改进YOLOv5的遥感图像目标检测算法[J/OL]. 计算机工程与应用: 1-9.
http://kns.cnki.net/kcms/detail/11.2127.TP.20221212.1832.022.html, 2023-06-12.
[4]  赵文清, 孔子旭, 周震东, 赵振兵. 增强小目标特征的航空遥感目标检测[J]. 中国图象图形学报, 2021, 26(3): 644-653.
[5]  Gong, H., Mu, T., Li, Q., et al. (2022) Swin-Transformer-Enabled Yolov5 with Attention Mechanism for Small Object Detection on Satellite Images. Remote Sensing, 14, Article 2861.
https://doi.org/10.3390/rs14122861
[6]  周华平, 郭伟. 改进YOLOv5网络在遥感图像目标检测中的应用[J]. 遥感信息, 2022, 37(5): 23-30.
[7]  李惠惠, 范军芳, 陈启丽. 改进YOLOv5的遥感图像目标检测[J]. 弹箭与制导学报, 2022(4): 17-23.
https://doi.org/10.15892/j.cnki.djzdxb.2022.04.004
[8]  Girshick, R.B., Donahue, J., Darrell, T. and Malik, J. (2013) Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, 23-28 June 2014, 580-587.
https://doi.org/10.1109/CVPR.2014.81
[9]  Girshick, R.B. (2015) Fast R-CNN. Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, 7-13 December 2015, 1440-1448.
https://doi.org/10.1109/ICCV.2015.169
[10]  Ren, S., He, K., Girshick, R.B. and Sun, J. (2015) Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149.
https://doi.org/10.1109/TPAMI.2016.2577031
[11]  Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.E., Fu, C. and Berg, A.C. (2015) SSD: Single Shot MultiBox Detector. In: Leibe, B., Matas, J., Sebe, N. and Welling, M., Eds., ECCV 2016: Computer Vision—ECCV 2016, Lecture Notes in Computer Science, Vol. 9905. Springer, Cham, 21-37.
https://doi.org/10.1007/978-3-319-46448-0_2
[12]  Redmon, J., Divvala, S.K., Girshick, R.B. and Farhadi, A. (2015) You Only Look Once: Unified, Real-Time Object Detection. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 27-30 June 2016, 779-788.
https://doi.org/10.1109/CVPR.2016.91
[13]  Redmon, J. and Farhadi, A. (2016) YOLO9000: Better, Faster, Stronger. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 21-26 July 2017, 6517-6525.
https://doi.org/10.1109/CVPR.2017.690
[14]  Redmon, J. and Farhadi, A. (2018) YOLOv3: An Incremental Improvement.
https://arxiv.org/abs/1804.02767
[15]  Bochkovskiy, A., Wang, C. and Liao, H.M. (2020) YOLOv4: Optimal Speed and Accuracy of Object Detection.
https://arxiv.org/abs/2004.10934
[16]  Zhu, X., Lyu, S., Wang, X. and Zhao, Q. (2021) TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios. Proceedings of 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, 11-17 October 2021, 2778-2788.
https://doi.org/10.1109/ICCVW54120.2021.00312

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133