全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于“肾藏精”理论探讨外泌体与阿尔茨海默症的相关性
On the Exploration of the Relationship between Exosomes and Alzheimer’s Disease Based on the Theory of “Kidney Stores the Essence”

DOI: 10.12677/TCM.2023.126187, PP. 1249-1257

Keywords: 肾藏精,外泌体,阿尔茨海默症,补肾益精
Kidney Stores the Essence
, Exosomes, Alzheimer’s Disease, Reinforcing Kidney for Supplementing Essence

Full-Text   Cite this paper   Add to My Lib

Abstract:

阿尔茨海默症(Alzheimer’s disease, AD)是一种神经退行性疾病,常伴有认知、记忆、语言等障碍,是老年人常见的痴呆形式。外泌体是一种纳米级的细胞外囊泡,广泛存在于血液、唾液、尿液、脑脊液等体液中,有独特的生物学特性,可以穿过血脑屏障,帮助诊断和治疗包括AD在内的神经系统疾病。AD主要病位在脑,因肾精亏虚,不能充养脑髓,髓海渐空,进而元神失养所致,临床中用补肾益精法治疗,肾精充足则脑髓得充,元神有所养,进而能有效缓解临床症状。故本文对“肾藏精”理论、外泌体、阿尔茨海默症,以及三者之间的关系进行了阐述,以期找到治疗AD新的思路与方向。
Alzheimer’s disease (AD) is a neurodegenerative disease often associated with cognitive, memory, and language impairments, and is a common form of dementia in the elderly. Exosomes are nano-sized extracellular vesicles that exist widely in blood, saliva, urine, cerebrospinal fluid and other body fluids. They have unique biological characteristics and can cross the blood-brain barrier, help diagnose and treat neurological disorder, including AD. The main location of AD is in the brain. Due to the deficiency of kidney essence, the brain marrow cannot be nourished, and the marrow sea becomes gradually empty, resulting in the loss of vitality. In clinic, the method of tonifying the kidney and replenishing the essence is used to treat AD. The brain and marrow are replenished when the kidney essence is sufficient, and then the nourishment of the spirit can effectively alleviate the clinical symptoms. Therefore, this article expounds the theory of “Kidney stores the essence”, exosomes, Alzheimer’s disease and the relationship among them, in order to find a new idea and direction for the treatment of AD.

References

[1]  Alzheimer’s Association (2020) 2020 Alzheimer’s Disease Facts and Figures. Alzheimer’s & Dementia, 16, 391-460.
https://doi.org/10.1002/alz.12068
[2]  Kang, S.S., Meng, L., Zhang, X., et al. (2022) Tau Modification by the Norepinephrine Metabolite DOPEGAL Stimulates Its Pathology and Propagation. Nature Structural & Molecular Biology, 29, 292-305.
https://doi.org/10.1038/s41594-022-00745-3
[3]  Kanninen, K.M., Bister, N., Koistinaho, J. and Malm, T. (2016) Exosomes as New Diagnostic Tools in CNS Diseases. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1862, 403-410.
https://doi.org/10.1016/j.bbadis.2015.09.020
[4]  翟双庆, 黎敬波. 内经选读[M]. 北京: 中国中医药出版社, 2016.
[5]  Xie, S., Zhang, Q. and Jiang, L. (2022) Current Knowledge on Exosome Biogenesis, Cargo-Sorting Mechanism and Therapeutic Implications. Membranes, 12, Article No. 498.
https://doi.org/10.3390/membranes12050498
[6]  Stahl, P.D. and Raposo, G. (2019) Extracellular Vesicles: Exosomes and Microvesicles, Integrators of Homeostasis. Physiology, 34, 169-177.
https://doi.org/10.1152/physiol.00045.2018
[7]  Cossetti, C., Iraci, N., Mercer, T.R., et al. (2014) Extracellular Vesicles from Neural Stem Cells Transfer IFN-γ via Ifngr1 to Activate Stat1 Signaling in Target Cells. Molecular Cell, 56, 193-204.
https://doi.org/10.1016/j.molcel.2014.08.020
[8]  Giovannelli, P., Di Donato, M., Galasso, G., et al. (2021) Communication between Cells: Exosomes as a Delivery System in Prostate Cancer. Cell Communication and Signaling, 19, 110.
https://doi.org/10.1186/s12964-021-00792-1
[9]  Boussadia, Z., Lamberti, J., Mattei, F., et al. (2018) Acidic Microenvironment Plays a Key Role in Human Melanoma Progression through a Sustained Exosome Mediated Transfer of Clinically Relevant Metastatic Molecules. Journal of Experimental & Clinical Cancer Research, 37, Article No. 245.
https://doi.org/10.1186/s13046-018-0915-z
[10]  Tian, T., Zhu, Y.-L., Zhou, Y.-Y, et al. (2014) Exosome Uptake through Clathrin-mediated Endocytosis and Macropinocytosis and Mediating miR-21 Delivery. Journal of Biological Chemistry, 289, 22258-22267.
https://doi.org/10.1074/jbc.M114.588046
[11]  Pegtel, D.M. and Gould, S.J. (2019) Exosomes. Annual Review of Biochemistry, 20, 487-514.
https://doi.org/10.1146/annurev-biochem-013118-111902
[12]  Zhang, L. and Yu, D. (2019) Exosomes in Cancer Development, Metastasis, and Immunity. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1871, 455-468.
https://doi.org/10.1016/j.bbcan.2019.04.004
[13]  Lindenbergh, M.F.S. and Stoorvogel, W. (2018) Antigen Presentation by Extracellular Vesicles from Professional Antigen-Presenting Cells. Annual Review of Immunology, 36, 435-459.
https://doi.org/10.1146/annurev-immunol-041015-055700
[14]  Zhu, L., Sun, H.-T., Wang, S., et al. (2020) Isolation and Characterization of Exosomes for Cancer Research. Journal of Hematology & Oncology, 13, Article No. 152.
https://doi.org/10.1186/s13045-020-00987-y
[15]  韩睿, 李琳, 王润清, 侯宗柳. 间充质干细胞来源外泌体对免疫功能调控的作用与应用前景[J]. 中国组织工程研究, 2019, 23(17): 2762-2769.
[16]  刚乔健, 何斯, 哈小琴. 间充质干细胞来源外泌体修复炎症损伤的研究进展[J]. 中国生物制品学杂志, 2022, 35(12): 1511-1516.
[17]  李双双, 杜春阳, 袁媛, 等. 不同细胞来源的外泌体的特点和功能[J]. 国际药学研究杂志, 2019, 46(6): 411-417.
[18]  刘满宇, 付璐, 张文慧, 张林波. 免疫细胞与外泌体相互作用机制的研究进展[J]. 中国免疫学杂志, 2019, 35(22): 2806-2812.
[19]  Hadley, E.E., Sheller-Miller, S., Saade, G., et al. (2018) Amnion Epithelial Cell-Derived Exosomes Induce Inflammatory Changes in Uterine Cells. American Journal of Obstetrics & Gynecology, 219, 478.E1-478.E21.
https://doi.org/10.1016/j.ajog.2018.08.021
[20]  Kong, J., Wang, F., Zhang, J., et al. (2018) Exosomes of Endothelial Progenitor Cells Inhibit Neointima Formation after Carotid Artery Injury. Journal of Surgical Research, 232, 398-407.
https://doi.org/10.1016/j.jss.2018.06.066
[21]  Su, L., Li, R., Zhang, Z., et al. (2022) Identification of Altered Exosomal microRNAs and mRNAs in Alzheimer’s Disease. Ageing Research Reviews, 73, Article ID: 101497.
https://doi.org/10.1016/j.arr.2021.101497
[22]  Barile, L. and Vassalli, G. (2017) Exosomes: Therapy Delivery Tools and Biomarkers of Diseases. Pharmacology & Therapeutics, 174, 63-78.
https://doi.org/10.1016/j.pharmthera.2017.02.020
[23]  Liao, W., Du, Y., Zhang, C., et al. (2019) Exosomes: The Next Generation of Endogenous Nanomaterials for Advanced Drug Delivery and Therapy. Acta Biomaterialia, 86, 1-14.
https://doi.org/10.1016/j.actbio.2018.12.045
[24]  Kalluri, R. and LeBleu, V.S. (2020) The Biology, Function, and Biomedical Applications of Exosomes. Science, 367, eaau6977.
https://doi.org/10.1126/science.aau6977
[25]  Fitts, C.A., Ji, N., Li, Y. and Tan, C. (2019) Exploiting Exosomes in Cancer Liquid Biopsies and Drug Delivery. Advanced Healthcare Materials, 8, e1801268.
https://doi.org/10.1002/adhm.201801268
[26]  Cano, A., Turowski, P., Ettcheto, M., et al. (2021) Nanomedi-cine-Based Technologies and Novel Biomarkers for the Diagnosis and Treatment of Alzheimer’s Disease: From Current to Future Challenges. Journal of Nanobiotechnology, 19, Article No. 122.
https://doi.org/10.1186/s12951-021-00864-x
[27]  Sinha, S., Hoshino, D., Hong, N.H., et al. (2016) Cortactin Promotes Exosome Secretion by Controlling Branched Actin Dynamics. Journal of Cell Biology, 214, 197-213.
https://doi.org/10.1083/jcb.201601025
[28]  Choi, S., Kim, Y., Hebisch, M., et al. (2014) A Three-Dimensional Human Neural Cell Culture Model of Alzheimer’s Disease. Nature, 515, 274-278.
https://doi.org/10.1038/nature13800
[29]  Kandimalla, R., Saeed, M., Tyagi, N., Gupta, R.C. and Aqil, F. (2023) Exosome-Based Approaches in the Management of Alzheimer’s Disease. Neuroscience & Biobehavioral Reviews, 144, Article ID: 104974.
https://doi.org/10.1016/j.neubiorev.2022.104974
[30]  Clark, I.C., Gutiérrez-Vázquez, C., Wheeler, M.A., et al. (2021) Barcoded Viral Tracing of Single-Cell Interactions in Central Nervous System Inflammation. Science, 372, eabf1230.
https://doi.org/10.1126/science.abf1230
[31]  Liddelow, S.A., Guttenplan, K.A., Clarke, L.E., et al. (2017) Neurotoxic Reactive Astrocytes Are Induced by Activated Microglia. Nature, 541, 481-487.
https://doi.org/10.1038/nature21029
[32]  Matousek, S.B., Ghosh, S., Shaftel, S.S., et al. (2012) Chronic IL-1β-Mediated Neuroinflammation Mitigates Amyloid Pathology in a Mouse Model of Alzheimer’s Disease without Inducing Overt Neurodegeneration. Journal of Neuroimmune Pharmacology, 7, 156-164.
https://doi.org/10.1007/s11481-011-9331-2
[33]  Alexander, M., Hu, R., Runtsch, M.C., et al. (2015) Exo-some-Delivered microRNAs Modulate the Inflammatory Response to Endotoxin. Nature Communications, 6, Article No. 7321.
https://doi.org/10.1038/ncomms8321
[34]  Liu, Z., Zhang, H., Liu, S., Hou, Y. and Chi, G. (2023) The Dual Role of Astrocyte-Derived Exosomes and Their Contents in the Process of Alzheimer’s Disease. Journal of Alzheimer’s Disease, 91, 33-42.
https://doi.org/10.3233/JAD-220698
[35]  Pacheco-Quinto, J., Clausen, D., Pérez-González, R., et al. (2019) Intracellular Metalloprotease Activity Controls Intraneuronal Aβ Aggregation and Limits Secretion of Aβ via Exosomes. The FASEB Journal, 33, 3758-3771.
https://doi.org/10.1096/fj.201801319R
[36]  Bulloj, A., Leal, M.C., Xu, H., Casta?o, E. and Morelli, L. (2010) Insulin-Degrading Enzyme Sorting in Exosomes: A Secretory Pathway for a Key Brain Amyloid-β Degrading Protease. Journal of Alzheimer’s Disease, 19, 79-95.
https://doi.org/10.3233/JAD-2010-1206
[37]  Son, S.M., Kang, S., Choi, H. and Mook-Jung, I. (2015) Statins Induce Insulin-Degrading Enzyme Secretion from Astrocytes via an Autophagy-Based Unconventional Secretory Pathway. Molecular Neurodegeneration, 10, Article No. 56.
https://doi.org/10.1186/s13024-015-0054-3
[38]  Tamboli, I.Y., Barth, E., Christian, L., et al. (2010) Statins Promote the Degradation of Extracellular Amyloid β-Peptide by Microglia via Stimulation of Exosome-Associated Insulin-degrading Enzyme (IDE) Secretion. Journal of Biological Chemistry, 285, 37405-37414.
https://doi.org/10.1074/jbc.M110.149468
[39]  Wang, Z., Jackson, R.J., Hong, W., et al. (2017) Human Brain-Derived Aβ Oligomers Bind to Synapses and Disrupt Synaptic Activity in a Manner That Requires APP. Journal of Neuroscience, 37, 11947-11966.
https://doi.org/10.1523/JNEUROSCI.2009-17.2017
[40]  Simón, D., García-García, E., Royo, F., Falcón-Pérez, J.M. and Avila, J. (2012) Proteostasis of Tau. Tau Overexpression Results in Its Secretion via Membrane Vesicles. FEBS Letters, 586, 47-54.
https://doi.org/10.1016/j.febslet.2011.11.022
[41]  Yuyama, K., Sun, H., Mitsutake, S. and Igarashi, Y. (2012) Sphingolipid-Modulated Exosome Secretion Promotes Clearance of Amyloid-β by Microglia. Journal of Biological Chemistry, 287, 10977-10989.
https://doi.org/10.1074/jbc.M111.324616
[42]  Deng, Z., Wang, J., Xiao, Y, et al. (2021) Ultrasound-Mediated Augmented Exosome Release from Astrocytes Alleviates Amyloid-β-Induced Neurotoxicity. Theranostics, 11, 4351-4362.
https://doi.org/10.7150/thno.52436
[43]  高振橙, 刘欣. 间充质干细胞外泌体在神经系统疾病修复过程中的作用与应用[J]. 中国组织工程研究, 2020, 24(19): 3048-3054.
[44]  阿尔茨海默病5XFAD小鼠模型尿液中外泌体microRNA的表达谱分析[J]. 中国比较医学杂志, 2021, 31(9): 97.
[45]  凌四海, 支杨, 李莹, 等. 血浆NCAM/ABCA1双标外泌体内Aβ42和microRNA-388-5p在阿尔茨海默病早期诊断中的价值[J]. 疾病监测, 2022, 37(6): 821-825.
[46]  邓珊, 潘丽雅, 覃露, 等. 外泌体在阿尔茨海默病诊治中的研究进展[J]. 中华老年心脑血管病杂志, 2023, 25(3): 331-333.
[47]  Bilousova, T., Simmons, B.J., Knapp, R.R., et al. (2020) Dual Neutral Sphingomyelinase-2/Acetylcholinesterase Inhibitors for the Treatment of Alzheimer’s Disease. ACS Chemical Biology, 15, 1671-1684.
https://doi.org/10.1021/acschembio.0c00311
[48]  Passeri, E., Elkhoury, K., Morsink, M., et al. (2022) Alzheimer’s Disease: Treatment Strategies and Their Limitations. International Journal of Molecular Sciences, 23, Article No. 13954.
https://doi.org/10.3390/ijms232213954
[49]  Wang, H., Sui, H., Zheng, Y., et al. (2019) Curcumin-Primed Exosomes Potently Ameliorate Cognitive Function in AD Mice by Inhibiting Hyperphosphorylation of the Tau Protein through the AKT/GSK-3β Pathway. Nanoscale, 11, 7481-7496.
https://doi.org/10.1039/C9NR01255A
[50]  赵长安, 李恩, 赵京山. 补肾填精方对阿尔茨海默病大鼠学习记忆行为的影响[J]. 中国中医基础医学杂志, 2002, 8(6): 33-35.
[51]  孙世标, 潘小龙, 魏智慧, 等. 补肾抗衰类中药联合干细胞疗法治疗阿尔茨海默病的机制研究进展[J/OL]. 中国实验方剂学杂志: 1-14. http://kns.cnki.net/kcms/detail/11.3495.R.20221028.1343.014.html, 2023-06-13.
[52]  马俊杰, 周春祥, 周西彬, 王小龙. “补肾生髓”理念下龟鹿二仙胶干预AD患者VRS及炎症的临床研究[J]. 时珍国医国药, 2022, 33(6): 1386-1388.
[53]  邱海鹏, 张晓璇, 申兴斌, 等. 补肾益智方联合丁苯酞对阿尔茨海默病患者Aβ, GSH-Px, SOD及MDA水平的影响[J]. 中国实验方剂学杂志, 2016, 22(14): 187-191.
[54]  张晨, 张进, 黄进, 等. 基于干细胞的“肾精”理论与衰老机制探析[J]. 辽宁中医杂志, 2014, 41(9): 1877-1879.
[55]  Zhou, S., Qiao, Y.M., Liu, Y.G., et al. (2020) Bone Marrow Derived Mesenchymal Stem Cells Pretreated with Erythropoietin Accelerate the Repair of Acute Kidney Injury. Cell & Bioscience, 10, Article No. 130.
https://doi.org/10.1186/s13578-020-00492-2
[56]  陈立, 王小琴. 骨髓间充质干细胞为中医肾藏精理论作用的重要物质基础[J]. 中华中医药学刊, 2016, 34(11): 2599-2601.
[57]  Yeo, R.W.Y., Lai, R.C., Zhang, B., et al. (2013) Mesenchymal Stem Cell: An Efficient Mass Producer of Exosomes for Drug Delivery. Advanced Drug Delivery Reviews, 65, 336-341.
https://doi.org/10.1016/j.addr.2012.07.001
[58]  Mendt, M., Kamerkar, S., Sugimoto, H., et al. (2018) Generation and Testing of Clinical-Grade Exosomes for Pancreatic Cancer. JCI Insight, 3, e99263.
https://doi.org/10.1172/jci.insight.99263
[59]  Zomer, A., Maynard, C., Verweij, F.J., et al. (2015) In Vivo Imaging Reveals Extracellular Vesicle-Mediated Phenocopying of Metastatic Behavior. Cell, 161, 1046-1057.
https://doi.org/10.1016/j.cell.2015.04.042
[60]  郭澜, 李莉, 葛继荣. 从外泌体探讨“肾主骨生髓”理论与骨质疏松症的关系[J]. 中国骨质疏松杂志, 2020, 26(12): 1852-1856.
[61]  孟菲菲, 杨长伟, 高志礼, 王花欣. 外泌体miRNA在骨质疏松中的调控作用及中医药干预研究[J]. 中国骨质疏松杂志, 2022, 28(11): 1711-1716.
[62]  杨傲飞. 基于肾主骨生髓理论研究淫羊藿苷调控外泌体内miR-122-5p对BMSCs成骨、迁移的作用及机制[D]: [博士学位论文]. 武汉: 湖北中医药大学, 2020.
[63]  李楠, 艾浩. 中药二仙汤对骨髓干细胞增值和迁移能力的影响[J]. 中国计划生育学杂志, 2017, 25(7): 444-446+454.
[64]  刘燕, 关永格, 宋阳. 归肾丸水提物干预SD大鼠骨髓间充质干细胞增殖及PI3K、AKT蛋白的表达[J]. 中国组织工程研究, 2020, 24(13): 1983-1988.
[65]  de Boer, C., Calder, B., Blackhurst, D., et al. (2021) Analysis of the Regenerative Capacity of Human Serum Exosomes after a Simple Multistep Separation from Lipoproteins. Journal of Tissue Engineering and Regenerative Medicine, 15, 63-77.
https://doi.org/10.1002/term.3155

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133