全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于YOLOv5的改进密集行人检测算法
An Improved Dense Pedestrian Detection Algorithm Based on YOLOv5

DOI: 10.12677/CSA.2023.136117, PP. 1199-1207

Keywords: YOLOv5,密集行人检测,SE,Soft-NMS,深度学习,注意力机制
YOLOv5
, Dense Pedestrian Detection, SE, Soft-NMS, Deep Learning, Attention Mechanism

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对密集行人检测中行人之间高度遮挡重叠所带来的精度低和漏检高的问题,提出一种密集行人检测方法:Serried-YOLOv5。实验基于YOLOv5s,首先在网络特征融合阶段引入注意力机制,添加1个SE模块提高对有用信息定位的精度;然后使用Soft-NMS代替原有的NMS,保留IOU中等,但置信度较高的框,防止漏检。实验结果表明:Dense-YOLOv5相比原YOLOv5在CrowdHuman数据集上,在保证实时性的前提下,FPS提高了9.091;AP提高了1.5%;召回率Recall提高了5%,检测平均精度均值mAP0.5提升了1.5%,证明了Serried-YOLOv5方法在密集行人检测中的有效性。
In order to solve the problems of low accuracy and high missed detection caused by high occlusion overlap between pedestrians in dense pedestrian detection, a dense pedestrian detection method is proposed: Serried-YOLOv5. The experiment is based on YOLOv5s. Firstly, the attention mechanism is introduced in the network feature fusion stage, and an SE module is added to improve the accuracy of locating useful information. Then replace the original NMS with Soft-NMS, and reserve the enclosure with a medium IOU but high confidence to prevent missing checks. Experimental results show that compared with original YOLOv5 in CrowdHuman dataset, Dense-YOLOv5 has an FPS in-crease of 9.091 under the premise of ensuring real-time performance. AP increased 1.5 percent; The Recall rate is increased by 5%, and the average accuracy of mAP0.5 is increased by 1.5%, which proves the effectiveness of Serried-YOLOv5 method in dense pedestrian detection.

References

[1]  赵子露. 基于深度学习的商品图片检测算法[D]: [硕士学位论文]. 石家庄: 河北经贸大学, 2022.
https://doi.org/10.27106/d.cnki.ghbju.2022.000265
[2]  肖伶. 基于机器视觉的行人检测算法研究与实现[D]: [硕士学位论文]. 贵阳: 贵州大学, 2019.
[3]  Ivars, N., Roberts, K., Anatolijs, Z., Laura, L. and Artis, D. (2022) Dataset of Annotated Virtual Detection Line for Road Traffic Monitoring. Data, 7, 40.
https://doi.org/10.3390/data7040040
[4]  Guo, Z.X., Liao, W.Z., Xiao, Y.F., Veelaert, P. and Philips, W. (2021) Weak Segmentation Supervised Deep Neural Networks for Pedestrian Detection. Pattern Recognition, 119, Article ID: 108066.
https://doi.org/10.1016/j.patcog.2021.108063
[5]  高宗, 李少波, 陈济楠, 李政杰. 基于YOLO网络的行人检测方法[J]. 计算机工程, 2018, 44(5): 215-219+226.
https://doi.org/10.19678/j.issn.1000-3428.0046885
[6]  刘善良, 王士华, 史宝周, 姜鹏, 袁勇超, 李振凯, 亓昭敏. 基于GWO-SVM的行人跌倒检测方法[J]. 计算技术与自动化, 2023, 42(1): 84-90.
https://doi.org/10.16339/j.cnki.jsjsyzdh.202301015
[7]  张超, 王亮. 基于边缘计算的行人检测算法研究[J]. 现代信息科技, 2023, 7(6): 81-84.
https://doi.org/10.19850/j.cnki.2096-4706.2023.06.021
[8]  Roszyk, K., Nowicki, M.R. and Skrzypczyński, P. (2022) Adopting the YOLOv4 Architecture for Low-Latency Multispectral Pedestrian Detection in Autonomous Driving. Sensors, 22, Article No. 1082.
https://doi.org/10.3390/s22031082
[9]  李颀, 王娇, 邓耀辉. 基于遮挡感知的行人检测与跟踪算法[J]. 传感器与微系统, 2023, 42(4): 126-130.
https://doi.org/10.13873/J.1000-9787(2023)04-0126-05
[10]  高莹. 智能交通系统中的计算机视觉技术应用[J]. 石河子科技, 2023(2): 71-72.
[11]  曹海涛, 邓小颖, 张梦, 张剑云, 贺翔, 朱金荣. 改进YoloV5的行人检测算法[J]. 计算机辅助工程, 2023, 32(1): 53-59.
https://doi.org/10.13340/j.cae.2023.01.010
[12]  Hu, J., Shen, L. and Sun, G. (2018) Squeeze-and-Excitation Networks. 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, 18-22 June 2018, 7132-7141.
https://doi.org/10.1109/CVPR.2018.00745
[13]  Hendrie, M., Mush-kin, H., Lombeyda, S. and Davidoff, S. (2022) JPL/Caltech ArtCenter. Information Design Journal, 27, 76-84.
https://doi.org/10.1075/idj.22009.hen
[14]  Xie, J., Pang, Y.W., Cholakkal, H., Anwer, R., Khan, F. and Shao, L. (2021) PSC-Net: Learning Part Spatial Co-Occurrence for Occluded Pedestrian Detection. Science China (Information Sciences), 64, 31-43.
https://doi.org/10.1007/s11432-020-2969-8
[15]  李恒超, 刘香莲, 刘鹏, 冯斌. 基于多尺度感知的密集人群计数网络[J/OL]. 西南交通大学学报: 1-9. http://kns.cnki.net/kcms/detail/51.1277.U.20230316.1101.004.html, 2023-04-25.
[16]  韩晶, 王希畅, 吕学强, 张凯. SGNet: 融合多特征的密集人群计数网络[J]. 计算机工程与设计, 2022, 43(11): 3001-3007.
https://doi.org/10.16208/j.issn1000-7024.2022.11.001
[17]  李华, 孔娇, 乔峥元, 白乐. 风险感知对城市景区密集人群不安全行为的影响研究[J/OL]. 安全与环境学报: 1-10. http://kns.cnki.net/kcms/detail/11.4537.X.20220617.1422.002.html, 2023-04-25.
[18]  张译. 基于深度学习的密集人群计数算法研究[D]: [硕士学位论文]. 无锡: 江南大学, 2022.
https://doi.org/10.27169/d.cnki.gwqgu.2022.001512
[19]  潘昊, 刘翔, 赵静文, 张星. 一种面向密集场景的轻量化人群检测网络[J/OL]. 电子科技: 1-9.
https://doi.org/10.16180/j.cnki.issn1007-7820.2023.08.006, 2023-04-25.
[20]  罗富章. 车站自动检票闸机控制系统研究[D]: [硕士学位论文]. 南昌: 东华理工大学, 2022.
https://doi.org/10.27145/d.cnki.ghddc.2022.000366

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133