全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Gilbert阻尼作用下形变铁氧体中的磁孤子传播
The Propagation of Magnetic Soliton in Deformed Ferrites under Gilbert Damping

DOI: 10.12677/APP.2023.136031, PP. 264-273

Keywords: Gilbert阻尼,不均匀交换作用,磁孤子,铁氧体
Gilbert Damping
, Inhomogeneous Exchange Effect, Magnetic Soliton, Ferrites

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究了电磁超短波在(1 + 1)维Gilbert阻尼存在时的形变铁氧体中的传播。我们从麦克斯韦方程和朗道–利夫希茨–吉尔伯特方程出发,通过多重尺度展开方法推导出一个广义的超短波模型。通过数值模拟,研究了不同类型的非均匀交换作用和Gilbert阻尼共同作用对磁孤子传播的影响。结果表明,在Gilbert阻尼作用下,磁孤子能量逐渐耗散,直至消失。磁孤子的耗散可以通过调控局域非均匀交换作用函数,实现选择性局域位置耗散减弱。通过设置局域线性非均匀交换作用,可以在整体上一定程度地减弱孤子的这种能量耗散。
In this paper, we study in detail the propagation of electromagnetic ultrashort waves in a deformed ferrite in the presence of Gilbert damping. We derive a generalized ultrashort-wave model from the Maxwell’s equation supplemented by the Landau-Lifshitz-Gilbert equation by means of a multiscale scheme. Numerical simulations are performed to study the effects of different types of inhomogeneous exchange effect and Gilbert damping on the propagation of magnetic solitons. The results show that under the effect of Gilbert damping, the magnetic soliton energy is gradually dissipated until it disappears. However, the dissipation of magnetic solitos can be reduced selec-tively by adjusting a localized inhomogeneous exchange effect function. By setting the localized linear inhomogeneous exchange effect, this energy dissipation of the soliton can be reduced to a certain extent as a whole.

References

[1]  Spaldin, N.A., Cheong, S.W. and Ramesh, R. (2010) Multiferroics: Past, Present, and Future. Physics Today, 63, 38-43.
https://doi.org/10.1063/1.3502547
[2]  Manikandan, A., Yogasundari, M., Thanrasu, K., et al. (2020) Struc-tural, Morphological and Optical Properties of Multifunctional Magnetic-Luminescent ZnO@ Fe3O4 Nanocomposite. Physica E: Low Dimensional Systems and Nanostructures, 124, Article ID: 114291.
https://doi.org/10.1016/j.physe.2020.114291
[3]  Hou, C., Yu, H., Zhang, Q., et al. (2010) Preparation and Magnetic Property Analysis of Monodisperse Co-Zn Ferrite Nanospheres. Journal of Alloys and Compounds, 491, 431-435.
https://doi.org/10.1016/j.jallcom.2009.10.217
[4]  Tatarchuk, T.R., Bououdina, M., Paliychuk, N.D., et al. (2017) Structural Characterization and Antistructure Modeling of Cobalt-Substituted Zinc Ferrites. Journal of Alloys and Compounds, 694, 777-791.
https://doi.org/10.1016/j.jallcom.2016.10.067
[5]  Deraz, N.M. and Alarififi, A. (2012) Structural, Morpho-logical and Magnetic Properties of Nano-Crystalline Zinc Substituted Cobalt Ferrite System. Journal of Analytical and Applied Pyrolysis, 94, 41-47.
https://doi.org/10.1016/j.jaap.2011.10.004
[6]  Umapathy, V., Manikandan, A., Antony, S.A., et al. (2015) Structure, Morphology and Opto-Magnetic Properties of Bi2MoO6 Nano-Photocatalyst Synthesized by Sol-Gel Method. Transactions of Nonferrous Metals Society of China, 25, 3271-3278.
https://doi.org/10.1016/S1003-6326(15)63948-6
[7]  Hilpert, S. (1909) Correspondence as to Structure and Origin in Magnetic Properties of Ferrite and Ironoxide. Berichte der deutschen chemischen Gesellschaft, 42, 2248-2261.
https://doi.org/10.1002/cber.190904202121
[8]  Hilpert, S. (1909) Manufacturing Method of Magnetic Materials Having Small Electric Conductivity for Electric and Magnetic Apparatus. German Pat, 226, 347.
[9]  Adam, J.D., Davis, L.E., Dionne, G.F., et al. (2002) Ferrite Devices and Materials. IEEE Transactions on Microwave Theory and Techniques, 50, 721-737.
https://doi.org/10.1109/22.989957
[10]  Tanbakuchi, H., Nicholson, D., Kunz, B., et al. (1989) Magnetically Tunable Oscillators and Filters. IEEE Transactions on Magnetics, 25, 3248-3253.
https://doi.org/10.1109/20.42268
[11]  Fetisov, Y.K. and Srinivasan, G. (2006) Electric Field Tuning Characteristics of a Ferrite-Piezoelectric Microwave Resonator. Applied Physics Letters, 88, Article ID: 143503.
https://doi.org/10.1063/1.2191950
[12]  Zahwe, O., Abdel Samad, B., Sauviac, B., et al. (2010) YIG Thin Film Used to Miniaturize a Coplanar Junction Circulator. Journal of Electromagnetic Waves and Applications, 24, 25-32.
https://doi.org/10.1163/156939310790322073
[13]  Bonner, J.C., Blote, H.W.J., Beck, H., et al. (1981) Physics in One Dimension. Springer-Verlag, Berlin, 115-128.
[14]  Bernasconi, J. and Schneider, T. (2012) Physics in One Dimension: Proceedings of an International Conference Fribourg, Switzerland, August 25-29, 1980. Springer Science & Business Media, Berlin.
[15]  Duerr, G., Huber, R. and Grundler, D. (2011) Enhanced Func-tionality in Magnonics by Domain Walls and Inhomogeneous Spin Configurations. Journal of Physics: Condensed Matter, 24, Article ID: 024218.
https://doi.org/10.1088/0953-8984/24/2/024218
[16]  Porsezian, K. (1997) Nonlinear Dynamics of the Radi-ally Symmetric and Site Dependent Anisotropic Heisenberg Spin Chain. Chaos, Solitons & Fractals, 8, 27-31.
https://doi.org/10.1016/S0960-0779(96)00089-6
[17]  Saravanan, M. and Arnaudon, A. (2018) Engineering Solitons and Breathers in a Deformed Ferromagnet: Effect of Localised Inhomogeneities. Physics Letters A, 382, 2638-2644.
https://doi.org/10.1016/j.physleta.2018.07.015
[18]  Saravanan, M. and Cardoso, W.B. (2019) Parametrically Driven Localized Magnetic Excitations with Spatial Inhomogeneity. Communications in Nonlinear Science and Numerical Simulation, 69, 176-186.
https://doi.org/10.1016/j.cnsns.2018.09.021
[19]  Washimi, H. and Taniuti, T. (1966) Propagation of Ion-Acoustic Solitary Waves of Small Amplitude. Physical Review Letters, 17, 996-998.
https://doi.org/10.1103/PhysRevLett.17.996
[20]  Gardner, C.S. and Su, C.S. (1969) The Korteweg-de Vries Equation and Generalizations. III. Journal of Mathematical Physics, 10, 536-539.
https://doi.org/10.1063/1.1664873
[21]  Soohoo, R.F. (1960) Theory and Application of Ferrites. Prentice-Hall, Hoboken.
[22]  Kraenkel, R.A., Manna, M.A. and Merle, V. (2000) Nonlinear Short-Wave Propagation in Ferrites. Physical Review E, 61, 976-979.
https://doi.org/10.1103/PhysRevE.61.976
[23]  Lemoula, R.K.K., Kamdem, B.A., Kuetche, V.K., et al. (2021) Kruskal’s Simplification Scheme in Ferrite Dynamics. Journal of Mathematical Physics, 62, Article ID: 093513.
https://doi.org/10.1063/5.0048791
[24]  Tchokouansi, H.T., et al. (2022) Propagation of Single Valued Magnetic Solitary Waves in Circularly Polarized Ferrites. Chaos, Solitons & Fractals, 154, Article ID: 111690.
https://doi.org/10.1016/j.chaos.2021.111690
[25]  Leblond, H. and Manna, M. (2009) Short Waves in Ferromagnetic Media. Physical Review E, 80, Article ID: 037602.
https://doi.org/10.1103/PhysRevE.80.037602
[26]  Kuetche, V.K., Bouetou, T.B. and Kofane, T.C. (2011) Fractal Structure of Ferromagnets: The Singularity Structure Analysis. Journal of Mathematical Physics, 52, Article ID: 092903.
https://doi.org/10.1063/1.3641824
[27]  Khodadadi, B., Rai, A., Sapkota, A., et al. (2020) Con-ductivity-Like Gilbert Damping Due to Intraband Scattering in Epitaxial Iron. Physical Review Letters, 124, Article ID: 157201.
https://doi.org/10.1103/PhysRevLett.124.157201
[28]  Onbasli, M.C., Kehlberger, A., Kim, D.H., et al. (2014) Pulsed Laser Deposition of Epitaxial Yttrium Iron Garnet Films with Low Gilbert Damping and Bulk-Like Magnetization. APL Materials, 2, Article ID: 106102.
https://doi.org/10.1063/1.4896936
[29]  Balakrishnan, R. (1982) On the Inhomogeneous Heisenberg Chain. Journal of Physics C: Solid State Physics, 15, L1305.
https://doi.org/10.1088/0022-3719/15/36/007
[30]  Leblond, H. (2000) Transverse Stability of Solitons and Moving Domain Walls. Journal of Physics A: Mathematical and General, 33, 8105-8126.
https://doi.org/10.1088/0305-4470/33/45/308
[31]  Uchida, K., Nonaka, T., Kikkawa, T., et al. (2013) Longi-tudinal Spin Seebeck Effect in Various Garnet Ferrites. Physical Review B, 87, Article ID: 104412.
https://doi.org/10.1103/PhysRevB.87.104412
[32]  Taniuti, T. and Wei, C.C. (1968) Reductive Perturbation Method in Nonlinear Wave Propagation. I. Journal of the Physical Society of Japan, 24, 941-946.
https://doi.org/10.1143/JPSJ.24.941
[33]  Jin, X.W. and Lin, J. (2020) The Contributions of Gil-bert-Damping and Inhomogeneous Exchange Effects on the Electromagnetic Short Waves Propagation in Saturated Ferrite Films. Journal of Magnetism and Magnetic Materials, 514, Article ID: 167192.
https://doi.org/10.1016/j.jmmm.2020.167192

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133