Maize is the main crop for Mexicans; however,
it is affected by species of fungi causing ear rot. This research aimed to
evaluate the effect of T. asperellum T11, T. harzianum T1 4 y T.
longibrachiatum T1 40 on some agronomic variables of four maize genotypes.
The seeds of the genotypes H-515, Zapata 7, and H-507 were treated with a
suspension of Trichoderma spp. to 1 × 108 spores mL-1,
using a control (untreated seed), and Benomyl as chemical control. The planting
was in Morelos, in a completely random block design with a factorial
arrangement. The ear rot was natural. Data were obtained at the end of the crop
cycle and processed in SAS 9.4®. H-515 genotype had the greatest effect on the treatment of maize seeds with Trichoderma spp. (5.562 kg); T. asperellum T11 was the strain that stood out with a mean yield of 50 ears in an area
of 16 m2 of 4.904 kg, and control of 4.448 kg. Our results are an
economic option for farmers to contemplate the use of Trichoderma and
obtain its benefits.
References
[1]
Venegas, G.M.R.S. (2016) Producción y Comercialización del Maíz en México, Earertura de Riesgo con Derivados. 21th Encuentro Nacional sobre Desarrollo Regional en México, Mérida, 15-18 November 2016, 2-7.
[2]
FAOSTAT (Organización de las Naciones Unidas para la Alimentación y la Agricultura) (2020) Crops and Livestock Products.
https://www.fao.org/faostat/en/#data/QCL/visualize
[3]
Varón, D.A.F. and Sarria, V.G.A. (2007) Enfermedades del maíz y su manejo. Instituto Colombiano Agropecuario (ICA), Bogotá, 10 p.
[4]
Dupont (Dupont Corporation) (2014) Pudrición de mazorca. 1-2.
https://www.pioneer.com/CMRoot/International/Mexico_Intl/Agronomia/Articulos_PDF/CM_7B_PUDRICION_MAZORCA_2014.pdf
[5]
PDL (Plant Disease Library) (2018) Pudrición de la mazorca por Penicillium y Fusarium. https://plantix.net/es/library/plant-diseases/100053/penicillium-ear-rot
[6]
Rios-Velasco, C., Caro-Cisneros, J.M., Berlanga-Reyes, D.I., Ruiz-Cisneros, M.F., Ornelas-Paz, J.J., Salas-Marina, M.A., Villalobos-Pérez, E. and Guerrero-Prieto, V.M. (2016) Identification and Antagonistic Activity in Vitro of Bacillus spp. and Trichoderma spp. Isolates against Common Phytopathogenic Fungi. Revista Mexicana de Fitopatología, 34, 84-99. https://doi.org/10.18781/R.MEX.FIT.1507-1
[7]
Kredics, L., Antal, Z., Dóczi, I., Manczinger, L., Kevei, F. and Nagy, E. (2003) Clinical Importance of the Genus Trichoderma. Acta Microbiologica et Immunologica Hungarica, 50, 105-117. https://doi.org/10.1556/AMicr.50.2003.2-3.1
[8]
Druzhinina, I.S., Seidl-Seiboth, V., Herrera-Estrella, A., Horwitz, B.A., Kenerley, C.M., Monet, E., Mukherjee, P.K., Zeilinger, S., Grigoriev, I.V. and Kubicek, C.P. (2011) Trichoderma: The Genomics of Opportunistic Success. Nature Reviews Microbiology, 9, 749-759. https://doi.org/10.1038/nrmicro2637
[9]
Malmierca, M.G., McCormick, S.P., Cardoza, R.E., Monte, E., Alexander, N.J. and Gutiérrez, S. (2015) Trichodiene Production in a Trichoderma harzianum erg1-Silenced Strain Provides Evidence of the Importance of the Sterol Biosynthetic Pathway in Inducing Plant Defense-Related Gene Expression. Molecular Plant-Microbe Interactions, 28, 1181-1197. https://doi.org/10.1094/MPMI-06-15-0127-R
[10]
Pérez, E., Rubio, M.B., Cardoza, R.E., Gutiérrez, S., Bettiol, W., Monte, E. and Hermosa, R. (2015) The Importance of Chorismate Mutase in the Biocontrol Potential of Trichoderma parareesei. Frontiers in Microbiology, 6, Article 1181.
https://doi.org/10.3389/fmicb.2015.01181
[11]
Harman, G.E., Obregon, M.A., Samuels, G.J. and Lorito, M. (2010) Changing Models for Commercialization and Implementation of Biocontrol in the Developing and the Developed World. Plant Disease, 94, 928-939.
https://doi.org/10.1094/PDIS-94-8-0928
[12]
Brimner, T.A. and Boland, G.J. (2003) A Review of the Non-Target Effects of Fungi Used to Biologically Control Plant Diseases. Agriculture, Ecosystems & Environment, 100, 3-16. https://doi.org/10.1016/S0167-8809(03)00200-7
[13]
Stefanova, N.M. (2007) Introducción y eficacia del biocontrol de fitopatógenos con Trichoderma spp. en Cuba. Instituto de Investigaciones de Sanidad, 11, 75-79.
[14]
Argumedo, D.R., Alarcón, A., Ferrera, C.R. and Peña, C.J.J. (2009) El género fúngico Trichoderma y su relación con contaminantes orgánico e inorgánico. Microbiología, 25, 257-259.
[15]
Sharma, P. K., and Gothalwal, R. (2017) Trichoderma: A Potent Fungus as Biological Control Agent. In: Singh, J. and Seneviratne, G., Eds., Agro-Environmental Sustainability, Springer, Cham, 113-125. https://doi.org/10.1007/978-3-319-49724-2_6
[16]
Colla, G., Rouphael, Y., Di Mattia, E., El-Nakhel, C. and Cardarelli, M. (2015) Co-Inoculation of Glomus intraradices and Trichoderma atroviride Acts as a Biostimulant to Promote Growth, Yield and Nutrient Uptake of Vegetable Crops. Journal of the Science of Food and Agriculture, 95, 1706-1715.
https://doi.org/10.1002/jsfa.6875
[17]
Khan, M.Y., Haque, M.M., Molla, A.H., Rahman, M.M. and Alam, M.Z. (2017) Antioxidant Compounds and Minerals in Tomatoes by Trichoderma-Enriched Biofertilizer and Their Relationship with the Soil Environments. Journal of Integrative Agriculture, 16, 691-703. https://doi.org/10.1016/S2095-3119(16)61350-3
[18]
SAS (SAS Institute) (2012) SAS/STAT User’s Guide: Software Version 9.4. Statistical Analysis System Institute, Cary.
[19]
R (R Core Team) (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.
[20]
Fuglie, K. (2016) The Growing Role of the Private Sector in Agricultural Research and Development World-Wide. Global Food Security, 10, 29-38.
https://doi.org/10.1016/j.gfs.2016.07.005
[21]
Fernández-Larrea, V.O. (2001) Microorganismos antagonistas para el control Fitosanitario. Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), Cartago, 6-100. http://www.sidalc.net/repdoc/a2120e/a2120e.pdf
[22]
Harman, G., Howell, C., Viterbo, A., Chet, I. and Lorito, M. (2004) Trichoderma Species—Opportunistic, Avirulent Plant Symbionts. Nature Reviews Microbiology, 2, 43-56. https://doi.org/10.1038/nrmicro797
[23]
Torres-De la Cruz, M., Ortiz-García, C.F., Bautista-Muñoz, C., Ramírez-Pool, J.A., ávalos-Contreras, N., Cappello-García, S. and De la Cruz-Pérez, A. (2015) Diversidad de Trichoderma en el agroecosistema cacao del estado de Tabasco, México. Revista Mexicana de Biodiversidad, 86, 947-961. https://doi.org/10.1016/j.rmb.2015.07.012
[24]
Shoresh, M., Harman, G. and Mastouri, F. (2010) Induced Systemic Resistance and Plant Responses to Fungal Biocontrol Agents. Annual Review of Phytopathology, 48, 21-43. https://doi.org/10.1146/annurev-phyto-073009-114450
[25]
Buysens, C., César, V., Ferrais, F., de Boulois, H.D. and Declerck, S. (2016) Inoculation of Medicago sativa Cover Crop with Rhizophagus irregularis and Trichoderma harzianum Increases the Yield of Subsequently-Grown Potato under Low Nutrient Conditions. Applied Soil Ecology: A Section of Agriculture, Ecosystems & Environment, 105, 137-143. https://doi.org/10.1016/j.apsoil.2016.04.011
[26]
Sharma, V., Salwan, R. and Sharma, P.N. (2017) The Comparative Mechanistic Aspects of Trichoderma and Probiotics: Scope for Future Research. Physiological and Molecular Plant Pathology, 100, 84-96. https://doi.org/10.1016/j.pmpp.2017.07.005
[27]
Camargo, C., David F. and ávila, E.R. (2014) Efectos del Trichoderma sp. sobre el crecimiento y desarrollo de la arveja (Pisum sativum L.). Ciencia y Agricultura, 11, 91-100.
[28]
Kamilova, F., Kravchenko, L.V., Shaposhnikov, A.I., Azarova, T., Makarova, N. and Lugtenberg, B. (2006) Organic Acids, Sugars, and L-Tryptophane in Exudates of Vegetables Growing on Stonewool and Their Effects on Activities of Rhizosphere Bacteria. Molecular Plant-Microbe Interactions: MPMI, 19, 250-256.
https://doi.org/10.1094/MPMI-19-0250
[29]
Tlapal, B.B., González, H.H., Zavaleta, M.E., Sánchez, G.P., Mora, A.G. and Nava, D.C. (2014) Colonización de Trichoderma y Bacillus en Plántulas de Agave tequilana Weber, var. Azul y el Efecto Sobre la Fisiología de la Planta y Densidad de Fusarium. Revista Mexicana de Fitopatología, 32, 61-74.
[30]
Xue, A.G., Guo, W., Chen, Y., Siddiqui, I., Marchand, G., Liu, J. and Ren, C. (2017) Effect of Seed Treatment with Novel Strains of Trichoderma spp. on Establishment and Yield of Spring Wheat. Crop Protection, 96, 97-102.
https://doi.org/10.1016/j.cropro.2017.02.003
[31]
López, Y., Pineda, J. B., Hernández, A. and Ulacio, D. (2010) Efecto diferencial de seis aislamientos de Trichoderma sobre la severidad de Rhizoctonia solani, desarrollo radical y crecimiento de plantas de maíz. Bioagro, 22, 37-42.
[32]
Erazo, J., Pastor, N., Giordano, F., Reynoso, M., Rovera, M. and Torres, A. (2020) Solubilización de fosfatos por Trichoderma harzianum ITEM 3636 y su efecto en plantas de maní.
http://www.ciacabrera.com.ar/docs/JORNADA%2035/17-Erazo%20-Solublizaicion%20de%20fosfatos%20por%20Trichoderma.pdf
[33]
Nadeem, S.M., Ahmadb, M., Zahirc, Z.A., Javaidd, A. and Ashraf, M. (2014) The Role of Mycorrhizae and Plant Growth Promoting Rhizobacteria (PGPR) in Improving Crop Productivity under Stressful Environments. Biotechnology Advances, 32, 429-448. https://doi.org/10.1016/j.biotechadv.2013.12.005
[34]
Strange, R.N. and Scott, P.R. (2005) Plant Disease: A Threat to Global Food Security. Annual Review of Phytopathology, 4, 83-116.
https://doi.org/10.1146/annurev.phyto.43.113004.133839
[35]
Ju, X.T., Kou, C.L., Zhang, F.S. and Christie, P. (2006) Nitrogen Balance and Groundwater Nitrate Contamination: Comparison among Three Intensive Cropping Systems on the North China Plain. Environmental Pollution, 143, 117-125.
https://doi.org/10.1016/j.envpol.2005.11.005
[36]
Alvarado, S.L., Ulacio, D.O., Sanabria, M.Ch. and Jiménez M.T. (2011) Compatibilidad in Vitro de extractos vegetales y Trichoderma harzianum y su efecto en el crecimiento de Sclerotium rolfsii Sacc. y Sclerotium cepivorum BERK. Boletín del Centro de Investigaciones Biológicas, 45, 217-236.
[37]
Cardona, R. (2006) Distribución vertical de esclerocios de Macrophomina phaseolina en un suelo infestado naturalmente en el estado Portuguesa. Revista de la Facultad de Agronomía, 23, 285-293.
[38]
Kopert (2021) ¿Por qué utilizar especies de Trichoderma es una excelente idea para proteger las raíces de tus cultivos? Kopert, Querétaro.
https://www.koppert.mx/noticias-item/por-que-utilizar-especies-de-trichoderma- es-una-excelente-idea-para-proteger-las-raices-de-tus-cultivos/
[39]
Monte, E. (2001) Understanding Trichoderma: Between Biotechnology y Microbial Ecology Int. Microbiology: The Official Journal of the Spanish Society for Microbiology, 4, 1-4.
[40]
Ranasingh, N., Saurabh, A. and Nedunchezhiyan, M. (2006) Use of Trichoderma in Disease Managemant. Orissa Review, 63, 68-70.
[41]
Villegas, A.M.A. (2005) Trichoderma Pers. Características generales y su potencial biológico en la agricultura sostenible. Fitotecnia, 87, 182-189.
[42]
Matsumura, F. and Bousch, G.M. (1968) Degradation of Insecticides by a Soil Fungus Trichoderma viride. Journal of Economic Entomology, 61, 610-612.
https://doi.org/10.1093/jee/61.3.610
[43]
Smith, W.H. (1995) Forest Occurrence of Trichoderma Species: Emphasis on Potential Organochlorine (Xenobiotic) Degradation. Ecotoxicology and Environmental Safety, 32, 179-183. https://doi.org/10.1006/eesa.1995.1100
[44]
Logrieco, A., Mulè, G., Moretti, A. and Bottalico, A. (2002) Toxigenic Fusarium Species and Mycotoxins Associated with Maize Ear Rot in Europe. European Journal of Plant Pathology, 108, 597-609. https://doi.org/10.1023/A:1020679029993
[45]
Chandra Nayaka, S., Udaya Shankar, A.C., Reddy, M.S., Niranjana, S.R., Prakash, H.S., Shetty, H.S. and Mortensen, C.N. (2009) Control of Fusarium verticillioides, Cause of Ear Rot of Maize, by Pseudomonas fluorescens. Pest Management Science, 65, 769-775. https://doi.org/10.1002/ps.1751
[46]
Arispe-Vázquez, J.L., Hernández-Juárez, A., Castro del ángel, E., Aguirre-Uribe, L.A., Cerna Chávez, E. and Ochoa Fuentes, Y.M. (2023) Fusarium Species in Maize Grains and Stems (Zea mays L.) from Subsistence and Commercial Systems. Nova Scientia, 15, 1-23.
[47]
Blacutt, A.A., Gold, S.E., Voss, K.A., Gao, M. and Glenn, A.E. (2018) Fusarium verticillioides: Advancements in Understanding the Toxicity, Virulence, and Niche Adaptations of a Model Mycotoxigenic Pathogen of Maize. Phytopathology, 108, 312-326. https://doi.org/10.1094/PHYTO-06-17-0203-RVW
[48]
Proctor, R.H., Plattner, R.D., Desjarins, A.E., Busman, M., and Butchko, A. E. (2006.) Fumonisin Production in the Maize Pathogen Fusarium verticillioides: Genetic Basis of Naturally Occurring Chemical Variation. Journal of Agricultural and Food Chemistry, 54, 2424-2430. https://doi.org/10.1021/jf0527706
[49]
Marasas, W.F.O., Miller, J.D., Riley, R.T. and Visconti, A. (2000) Environmental Health Criteria for Fumonisin B1. World Health Organization, Geneva, 150 p.
[50]
IARC (International Agency for Research on Cancer) (2002) Some Traditional Herbal Medicines, Some Mycotoxins, Naphthalene and Styrene. IARC Monographs, 82, 301-366.
[51]
David-Miller, J. (2001) Factors That Affect the Occurrence of Fumonisin. Environmental Health Perspectives, 109, 321-324. https://doi.org/10.1289/ehp.01109s2321
[52]
Ariño, A., Herrera, M., Juan, T., Estopañan, G., Carramiñana, J.J., Rota, C. and Herrera, A. (2009) Influence of Agricultural Practices on the Contamination of Maize by Fumonisin Mycotoxins. Journal of Food Protection, 72, 898-902.
https://doi.org/10.4315/0362-028X-72.4.898
[53]
Chandra Nayaka, S., Niranjana, S.R., Uday Shankar, A.C., Niranjan Raj, S., Reddy, M.S., Prakash, H.S. and Mortensen, C.N. (2010) Seed Biopriming with Novel Strain of Trichoderma harzianum for the Control of Toxigenic Fusarium verticillioides and Fumonisins in Maize. Archives of Phytopathology and Plant Protection, 43, 264-282. https://doi.org/10.1080/03235400701803879
[54]
Infante, D., Martínez, B., González, N. and Reyes, Y. (2009) Mecanismos de acción de Trichoderma frente a hongos fitopatógenos. Revista de Protección Vegetal, 24, 14-21.