全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Hirshfeld Surface Analysis for Investigation of Intermolecular Interaction of Molecular Crystals

DOI: 10.4236/ijoc.2023.132006, PP. 57-85

Keywords: Chemical Crystallography, Cambridge Structure Database, CIF, Hirshfeld Surface Analysis, Schiff Base

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hirshfeld surface analysis has been widely used in recent years as a means to quantify and visualize various types of intermolecular interactions in molecular crystals. This review article introduces intermolecular interactions discussed with Hirshfeld surface analysis and 2D fingerprint plots. In addition, using CIF files obtained from our previous results, Hirshfeld surface analysis was newly performed, and the resulting 3DHirshfeld surfaces, 2D print plots, molecular structural features, and crystal structure relationships were described. Classification of their intermolecular interactions, statistical discussion focused on crystalline water and perspective on ligand-protein docking are also mentioned.

References

[1]  Gellman, S.H. (1997) Introduction: Molecular Recognition. Chemical Reviews, 97, 1231-1232.
https://doi.org/10.1021/cr970328j
[2]  Zeng, W., Wang, X., Zhou, T. and Zhang, Y. (2023) Crystal Structure, Photophysical Study, Hirshfeld Surface Analysis, and Nonlinear Optical Properties of a New Hydroxyphenylamino Meldrum’s Acid Derivative. Molecules, 28, Article No. 2181.
https://doi.org/10.3390/molecules28052181
[3]  Kumar, M., Jaiswar, G., Afzal, M., Muddassir, M., Alarifi, A., Fatima, A., Siddiqui, N., Ayub, R., Abduh, N.A.Y., Saeed, W.S. and Javed, S. (2023) Quantum Computational, Spectroscopic (FT-IR, FT-Raman, NMR, and UV-Vis) Hirshfeld Surface and Molecular Docking-Dynamics Studies on 5-Hydroxymethyluracil (Monomer and Trimer). Molecules, 28, Article No. 2116.
https://doi.org/10.3390/molecules28052116
[4]  Semenova, L.I., Ling, I. and Sobolev, A.N. (2023) Chirality as a Feature of the Crystal Structure of Lanthanide Ion Complexes—Some Simple Examples. Crystals, 13, Article No. 337.
https://doi.org/10.3390/cryst13020337
[5]  Bojarska, J., Breza, M., Remko, M., Czyz, M., Gajos-Michniewicz, A., Zimecki, M., Kaczmarek, K., Madura, I.D., Wojciechowski, J.M. and Wolf, W.M. (2022) Structural and Biofunctional Insights into the Cyclo(Pro-Pro-Phe-Phe-) Scaffold from Experimental and in Silico Studies: Melanoma and Beyond. International Journal of Molecular Sciences, 23, Article No. 7173.
https://doi.org/10.3390/ijms23137173
[6]  Craciun, N., Chisca, D., Melnic, E. and Fonari, M.S. (2023) Unprecedented Coordination Compounds with 4,4’-Diaminodiphenylethane as a Supramolecular Agent and Ditopic Ligand: Synthesis, Crystal Structures and Hirshfeld Surface Analysis. Crystals, 13, Article No. 289.
https://doi.org/10.3390/cryst13020289
[7]  Deeloed, W., Wannapaiboon, S., Pansiri, P., Kumpeerakij, P., Phomphrai, K., Laobuthee, A., Hanlumyuang, Y., Suramitr, S., Pinyou, P. and Wattanathana, W. (2020) Crystal Structure and Hirshfeld Surface Analysis of Bis(Triethanolamine)Nickel(II) Dinitrate Complex and a Revelation of Its Characteristics via Spectroscopic, Electrochemical and DFT Studies towards a Promising Precursor for Metal Oxides Synthesis. Crystals, 10, Article No. 474.
https://doi.org/10.3390/cryst10060474
[8]  Gacki, M., Kafarska, K., Pietrzak, A., Korona-Głowniak, I. and Wolf, W.M. (2020) Quasi-Isostructural Co(II) and Ni(II) Complexes with Mefenamato Ligand: Synthesis, Characterization, and Biological Activity. Molecules, 25, Article No. 3099.
https://doi.org/10.3390/molecules25133099
[9]  Krupka, K.M., Banach, S., Pocheć, M., Panek, J.J. and Jezierska, A. (2023) Making and Breaking—Insight into the Symmetry of Salen Analogues. Symmetry, 15, Article No. 424.
https://doi.org/10.3390/sym15020424
[10]  Mahmoudi, G., Kumar Seth, S., Bauza Riera, A., Ivanovich Zubkov, F. and Frontera, A. (2020) Novel Pb(II) Complexes: X-Ray Structures, Hirshfeld Surface Analysis and DFT Calculations. Crystals, 10, Article No. 568.
https://doi.org/10.3390/cryst10070568
[11]  Noor, A. (2022) Crystallographic Evidence of η1-Coordination of Bulky Aminopyridine in Halide-Containing Iron(II) Complexes. Crystals, 12, Article No. 697.
https://doi.org/10.3390/cryst12050697
[12]  Masternak, J., Zienkiewicz-Machnik, M., Łakomska, I., Hodorowicz, M., Kazimierczuk, K., Nosek, M., Majkowska-Młynarczyk, A., Wietrzyk, J. and Barszcz, B. (2021) Synthesis and Structure of Novel Copper(II) Complexes with N,O-or N,N-Donors as Radical Scavengers and a Functional Model of the Active Sites in Metalloenzymes. International Journal of Molecular Sciences, 22, Article No. 7286.
https://doi.org/10.3390/ijms22147286
[13]  Altowyan, M.S., Haukka, M., Soliman, S.M., Barakat, A., Alaswad, S.O., Boraei, A.T.A., Gad, E.M. and Youssef, M.F. (2023) Synthesis, Characterization and Single Crystal X-Ray Diffraction Analysis of Fused Triazolo/Thiadiazole Clubbed with Indole Scaffold. Crystals, 13, Article No. 423.
https://doi.org/10.3390/cryst13030423
[14]  Ghazzy, A., Taher, D., Korb, M., Al Khalyfeh, K., Helal, W., Amarne, H., Rüffer, T., Ishtaiwi, Z. and Lang, H. (2022) Rearrangement of Diferrocenyl 3,4-Thiophene Dicarboxylate. Inorganics, 10, Article No. 96.
https://doi.org/10.3390/inorganics10070096
[15]  Altowyan, M.S., Khalil, S.M.S.M., Al-Wahaib, D., Barakat, A., Soliman, S.M., Ali, A.E. and Elbadawy, H.A. (2022) Synthesis of a Novel Unexpected Cu(II)-Thiazolidine Complex—X-Ray Structure, Hirshfeld Surface Analysis, and Biological Studies. Molecules, 27, Article No. 4583.
https://doi.org/10.3390/molecules27144583
[16]  Seth, S.K. (2018) The Importance of CH···X (X=O, π) Interaction of a New Mixed Ligand Cu(II) Coordination Polymer: Structure, Hirshfeld Surface and Theoretical Studies. Crystals, 8, Article No. 455.
https://doi.org/10.3390/cryst8120455
[17]  Baykov, S.V., Mikherdov, A.S., Novikov, A.S., Geyl, K.K., Tarasenko, M.V., Gureev, M.A. and Boyarskiy, V.P. (2021) π-π Noncovalent Interaction Involving 1,2,4-and 1,3,4-Oxadiazole Systems: The Combined Experimental, Theoretical, and Database Study. Molecules, 26, Article No. 5672.
https://doi.org/10.3390/molecules26185672
[18]  Jmai, M., Gatfaoui, S., Issaoui, N., Roisnel, T., Kazachenko, A.S., Al-Dossary, O., Marouani, H. and Kazachenko, A.S. (2023) Synthesis, Empirical and Theoretical Investigations on New Histaminium Bis(Trioxonitrate) Compound. Molecules, 28, Article No. 1931.
https://doi.org/10.3390/molecules28041931
[19]  Zamisa, S.J. and Omondi, B. (2022) Microwave Assisted Synthesis, Crystal Structure and Hirshfeld Surface Analysis of Some 2-Formimidate-3-Carbonitrile Derivatives Bearing 4H-Pyran and Dihydropyridine Moieties. Molbank, 2022, M1364.
https://doi.org/10.3390/M1364
[20]  Sukhikh, A., Klyamer, D., Bonegardt, D. and Basova, T. (2023) Octafluoro-Substituted Phthalocyanines of Zinc, Cobalt, and Vanadyl: Single Crystal Structure, Spectral Study and Oriented Thin Films. International Journal of Molecular Sciences, 24, Article No. 2034.
https://doi.org/10.3390/ijms24032034
[21]  Novoa-Ramírez, C.S., Silva-Becerril, A., Olivera-Venturo, F.L., García-Ramos, J.C., Flores-Alamo, M. and Ruiz-Azuara, L. (2020) N/N Bridge Type and Substituent Effects on Chemical and Crystallographic Properties of Schiff-Base (Salen/Salphen) Niii Complexes. Crystals, 10, Article No. 616.
https://doi.org/10.3390/cryst10070616
[22]  Asad, M., Arshad, M.N., T.N., M.M. and Asiri, A.M. (2022) Chitosan Catalyzed Novel Piperidinium Dicoumarol: Green Synthesis, X-Ray Diffraction, Hirshfeld Surface and DFT Studies. Polymers, 14, Article No. 1854.
https://doi.org/10.3390/polym14091854
[23]  Minaeva, V., Karaush-Karmazin, N., Panchenko, O., Minaev, B. and Ågren, H. (2023) Hirshfeld and AIM Analysis of the Methylone Hydrochloride Crystal Structure and Its Impact on the IR Spectrum Combined with DFT Study. Crystals, 13, Article No. 383.
https://doi.org/10.3390/cryst13030383
[24]  Ruelas-álvarez, G.Y., Cárde-nas-Valenzuela, A.J., Galaviz-Moreno, L.L., Cruz-Enríquez, A., Campos-Gaxiola, J.J., Höpfl, H., Baldenebro-López, J., Vargas-Olvera, E.C., Miranda-Soto, V., García Grajeda, B.A. and Glossman-Mitnik, D. (2022) Four-Coordinate Monoboron Complexes with 8-Hydroxyquinolin-5-Sulfonate: Synthesis, Crystal Structures, Theoretical Studies, and Luminescence Properties. Crystals, 12, Article No. 783.
https://doi.org/10.3390/cryst12060783
[25]  Zięba, S., Piotrowska, A., Mizera, A., Ławniczak, P., Markiewicz, K.H., Gzella, A., Dubis, A.T. and Łapiński, A. (2021) Spectroscopic and Structural Study of a New Conducting Pyrazolium Salt. Molecules, 26, Article No. 4657.
https://doi.org/10.3390/molecules26154657
[26]  Zhuang, T.-H., Lin, Y.-M., Lin, H.-W., Guo, Y.-L., Li, Z.-W., Du, K.-Z., Wang, Z.-P. and Huang, X.-Y. (2023) Luminescence Enhancement and Temperature Sensing Properties of Hybrid Bismuth Halides Achieved via Tuning Organic Cations. Molecules, 28, Article No. 2380.
https://doi.org/10.3390/molecules28052380
[27]  Smarun, A.V., Jevtovic, V. and Ganguly, R. (2020) Synthesis, Structure and Hirshfeld Surface Analysis of Phosphine-Imidazolium Salt. Molbank, 2020, M1141.
https://doi.org/10.3390/M1141
[28]  Daśko, M., Dołęga, A., Siedzielnik, M., Biernacki, K., Ciupak, O., Rachon, J. and Demkowicz, S. (2021) Novel 1,2,3-Triazole Derivatives as Mimics of Steroidal System—Synthesis, Crystal Structures Determination, Hirshfeld Surfaces Analysis and Molecular Docking. Molecules, 26, Article No. 4059.
https://doi.org/10.3390/molecules26134059
[29]  Vassilyeva, O.Y., Buvaylo, E.A., Nesterova, O.V., Sobolev, A.N. and Nesterov, D.S. (2023) New Low-Dimensional Organic-Inorganic Lead Halide Hybrid Systems Directed by Imidazo[1,5-a]pyridinium-Based Cation or Imines: Synthesis, Structures, Non-Covalent Interactions and Optical Properties. Crystals, 13, Article No. 307.
https://doi.org/10.3390/cryst13020307
[30]  Boraei, A.T.A., Soliman, S.M., Haukka, M., El Tamany, E.S.H., Al-Majid, A.M. and Barakat, A. (2021) X-Ray Single Crystal Structure, Tautomerism Aspect, DFT, NBO, and Hirshfeld Surface Analysis of a New Schiff Bases Based on 4-Amino-5-Indol-2-yl-1,2,4-Triazole-3-Thione Hybrid. Crystals, 11, Article No. 1041.
https://doi.org/10.3390/cryst11091041
[31]  Collart, A., Zeller, M. and Hillesheim, P.C. (2022) Surface and Void Space Analysis of the Crystal Structures of Two Lithium Bis(pentafluoroethanesulfonyl)imide Salts. Crystals, 12, Article No. 701.
https://doi.org/10.3390/cryst12050701
[32]  Grudova, M.V., Novikov, A.S., Kubasov, A.S., Khrustalev, V.N., Kirichuk, A.A., Nenajdenko, V.G. and Tskhovrebov, A.G. (2022) Aurophilic Interactions in Cationic Three-Coordinate Gold(I) Bipyridyl/Isocyanide Complex. Crystals, 12, Article No. 613.
https://doi.org/10.3390/cryst12050613
[33]  Hamlaoui, M., Hamlaoui, I., Damous, M., Belhocine, Y., Sbei, N., Ali, F.A.M., Alghamdi, M.A., Talab, S., Rahali, S. and Merazig, H. (2022) Synthesis of Two Novel Copper(II) Complexes as Potential Inhibitors of HIV-1 Protease Enzyme: Experimental and Theoretical Investigations. Crystals, 12, Article No. 1066.
https://doi.org/10.3390/cryst12081066
[34]  Shivanna, C., Patil, S.M., Mallikarjunaswamy, C., Ramu, R., Akhileshwari, P., Nagaraju, L.R., Sridhar, M.A., Khanum, S.A., Ranganatha, V.L., Silina, E., Stupin, V. and Achar, R.R. (2022) Synthesis, Characterization, Hirshfeld Surface Analysis, Crystal Structure and Molecular Model-ing Studies of 1-(4-(Methoxy(phenyl)methyl)-2-methylphenoxy)butan-2-one Derivative as a Novel α-Glucosidase Inhibitor. Crystals, 12, Article No. 960.
https://doi.org/10.3390/cryst12070960
[35]  Osman, D.A., Macías, M.A., Al-Wahaibi, L.H., Al-Shaalan, N.H., Zondagh, L.S., Joubert, J., Garcia-Granda, S. and El-Emam, A.A. (2021) Structural Insights and Docking Analysis of Adamantane-Linked 1,2,4-Triazole Derivatives as Potential 11β-HSD1 Inhibitors. Molecules, 26, Article No. 5335.
https://doi.org/10.3390/molecules26175335
[36]  Abou-Taleb, H.A., Shoman, M.E., Makram, T.S., Abdel-Aleem, J.A. and Abdelkader, H. (2023) Exploration of the Safety and Solubilization, Dissolution, Analgesic Effects of Common Basic Excipients on the NSAID Drug Ketoprofen. Pharmaceutics, 15, Article No. 713.
https://doi.org/10.3390/pharmaceutics15020713
[37]  Moyano, S., Diosdado, B., San Felices, L., Elduque, A. and Giménez, R. (2021) Structural Diversity of Hydrogen-Bonded 4-Aryl-3,5-Dimethylpyrazoles for Supramolecular Materials. Materials, 14, Article No. 4550.
https://doi.org/10.3390/ma14164550
[38]  Wattanathana, W., Suetrong, N., Kongsamai, P., Chansaenpak, K., Chuanopparat, N., Hanlumyuang, Y., Kanjanaboos, P. and Wannapaiboon, S. (2021) Crystallographic and Spectroscopic Investigations on Oxidative Coordination in the Heteroleptic Mononuclear Complex of Cerium and Benzoxazine Dimer. Molecules, 26, Article No. 5410.
https://doi.org/10.3390/molecules26175410
[39]  Zhou, M.-M. and Xiang, D. (2022) Theoretical Prediction of Structures and Properties of 2,4,6-Trinitro-1,3,5-Triazine (TNTA) Green Energetic Materials from DFT and ReaxFF Molecular Modeling. Materials, 15, Article No. 3873.
https://doi.org/10.3390/ma15113873
[40]  Standish, K., Zeller, M., Barbosa, A.J. and Hillesheim, P.C. (2022) Examining the Non-Covalent Interactions for Two Polymorphs of a 2,1,3-benzoxadiazole Derivative. Crystals, 12, Article No. 1143.
https://doi.org/10.3390/cryst12081143
[41]  Rayes, A., Zárate-Roldán, S., Ara, I., Moncer, M., Dege, N., Gimeno, M.C., Ayed, B. and Herrera, R.P. (2021) Single-Crystal-to-Single-Crystal Transformation and Catalytic Properties of New Hybrid Perhalidometallates. Catalysts, 11, Article No. 758.
https://doi.org/10.3390/catal11070758
[42]  Hirshfeld, F.L. (1977) Bonded-Atom Fragments for Describing Molecular Charge Densities. Theoretica Chimica Acta, 44, 129-138.
https://doi.org/10.1007/BF00549096
[43]  Psycharis, V., Dermitzaki, D. and Raptopoulou, C.P. (2021) The Use of Hirshfeld Surface Analysis Tools to Study the Intermolecular Interactions in Single Molecule Magnets. Crystals, 11, Article No. 1246.
https://doi.org/10.3390/cryst11101246
[44]  Spackman, M.A. and Jayatilaka, D. (2009) Hirshfeld Surface Analysis. CrystEngComm, 11, 19-32.
https://doi.org/10.1039/B818330A
[45]  Carey, J.R., Ma, S.K., Pfister, T.D., Garner, D.K., Kim, H.K., Abramite, J.A., Wang, Z., Guo, Z. and Lu, Y. (2004) A Site-Selective Dual Anchoring Strategy for Artificial Metalloprotein Design. Journal of the American Chemical Society, 126, 10812-10813.
https://doi.org/10.1021/ja046908x
[46]  Matsuo, T., Imai, C., Yoshida, T., Saito, T., Hayashi, T. and Hirota, S. (2012) Creation of an Artificial Metalloprotein with a Hoveyda-Grubbs Catalyst Moiety through the Intrinsic Inhibition Mechanism of α-Chymotrypsin. Chemical Communications, 48, 1662-1664.
https://doi.org/10.1039/c2cc16898g
[47]  Maglio, O., Nastri, F. and Lombardi, A. (2012) Structural and Functional Aspects of Metal Binding Sites in Natural and Designed Metalloproteins. Ionic Interactions in Natural and Synthetic Macromolecules, 11, 361-450.
https://doi.org/10.1002/9781118165850.ch11
[48]  Jelsch, C., Ejsmont, K. and Huder, L. (2014) The Enrichment Ratio of Atomic Contacts in Crystals, an Indicator Derived from the Hirshfeld Surface Analysis. IUCrJ, 1, 119-128.
https://doi.org/10.1107/S2052252514003327
[49]  Groom, C.R., Bruno, I.J., Lightfoot, M.P. and Ward, S.C. (2016) The Cambridge Structural Database. Acta Crystallographica Section B, 72, 171-179.
https://doi.org/10.1107/S2052520616003954
[50]  Ward, S.C. and Sadiq, G. (2020) Introduction to the Cambridge Structural Database—A Wealth of Knowledge Gained from a Million Structures. CrystEngComm, 22, 7143-7144.
https://doi.org/10.1039/D0CE90154G
[51]  Turner, M.J., Mckinnon, J.J., Wolff, S.K., Grimwood, D.J., Spackman, P.R., Jayatilaka, D. and Spackman, M.A. (2017) CrystalExplorer17. University of Western Australia, Perth.
[52]  Suda, S., Akitsu, T., Onami, Y. and Haraguchi, T. (2021) Orthorhombic Polymorphism of 4-(2-Phenyldiazenyl)-2-[(phenylimino)methyl]phenol. X-Ray Structure Analysis Online, 37, 17-18.
https://doi.org/10.2116/xraystruct.37.17
[53]  Noor, S., Suda, S., Haraguchi, T., Khatoon, F. and Akitsu, T. (2021) Chiral Crystallization of a Zinc(II) Complex. Acta Crystallographica Section E, 77, 542-546.
https://doi.org/10.1107/S2056989021003650
[54]  Akitsu, T., Suda, S. and Katsuumi, N. (2021) Beyond the Scope of Each Computational Chemistry. Edelweiss Chemical Science Journal, 4, 25-26.
https://doi.org/10.33805/2641-7383.128
[55]  Onami, Y., Siddaraju, B.P., Anilkumar, H.G., Yathirajan, H.S., Haraguchi, T. and Akitsu, T. (2019) (Z)-1-Benzoyl-5-benzylidene-2-hydroxy-4-oxo-4,5-dihydro-1H-pyrrole-3-carbonitrile. IUCrData, 4, x190220.
https://doi.org/10.1107/S2414314619002207
[56]  Numata, T., Ikenomoto, S. and Akitsu, T. (2016) 4,4’-(1,2-Diazaniumylethane-1,2-diyl) dibenzoate trihydrate. IUCrData, 1, x160252.
https://doi.org/10.1107/S2414314616002522
[57]  Aritake, Y., Watanabe, Y. and Akitsu, T. (2010) 4-Phenyldiazenyl-2-[(R)-(1-phenylethyl) iminomethyl]phenol. Acta Crystallographica Section E, 66, o749.
https://doi.org/10.1107/S1600536810007762
[58]  Moriwaki, R., Yagi, S., Haraguchi, T. and Akitsu, T. (2017) 6-[(R)-(2-Hydroxy-1-phenylethyl)aminomethylidene]-4-(2-phenyldiazen-1-yl)cyclohexa-2,4-dien-1-one. IU-CrData, 2, x170979.
https://doi.org/10.1107/S2414314617009798
[59]  Akitsu, T. and Einaga, Y. (2006) A Chiral Photochromic Schiff Base: (R)-4-bromo-2-[(1-phenylethyl)iminomethyl]phenol. Acta Crystallographica Section E, 62, o4315-o4317.
https://doi.org/10.1107/S1600536806034891
[60]  Miura, Y., Aritake, Y. and Akitsu, T. (2009) A Chiral Photochromic Schiff Base: (R)-4-methoxy-2-[(1-phenylethyl)iminomethyl]phenol. Acta Crystallographica Section E, 65, o2381.
https://doi.org/10.1107/S1600536809035557
[61]  Akitsu, T. and Einaga, Y. (2003) A Redetermination of bis(N-methylethylenediamine-κ2N,N’)bis(perchlorato-κO)copper(II). Acta Crystallographica Section E, 59, m991-m993.
https://doi.org/10.1107/S160053680302213X
[62]  Akitsu, T. and Einaga, Y. (2004) Bis(5-chloro-N-isopropylsalicyldenaminato-κ2N,O) copper(II). Acta Crystallographica Section E, 60, m436-m438.
https://doi.org/10.1107/S1600536804005938
[63]  Akitsu, T. and Einaga, Y. (2004) Bis(N-ethyl-ethylenediamine-κ2N,N’)copper(II)-hexa-cyano-cobaltate(III)-water (3/2/4): A Two-Dimensional Ladder Structure of a Bimetallic Assembly. Acta Crystallographica Section E, 62, m750-m752.
https://doi.org/10.1107/S1600536806008105
[64]  Yagi, S., Haraguchi, T. and Akitsu, T. (2004) Crystal Structure of (E)-3-[(2,6-dimethylphenyl) diazenyl]-7-methyl-1H-indazole. Acta Crystallographica Section E, 74, m1421-m1423.
https://doi.org/10.1107/S2056989018012483
[65]  Moriwaki, R. and Akitsu, T. (2015) Crystal Structure of 2-{(R)-[1-(4-bromophenyl) ethyl]iminomethyl}-4-(phenyldiazenyl)phenol, a Chiral Photochromic Schiff Base. Acta Crystallographica Section E, 71, o886-o887.
https://doi.org/10.1107/S2056989015019866
[66]  Yamazaki, S., Nishiyama, K., Yagi, S., Haraguchi, T. and Akitsu, T. (2018) Crystal Structure of 3,6-Dihydroxy-4,5-dimethylbenzene-1,2-dicarbaldehyde. Acta Crystallographica Section E, 74, 1424-1426.
https://doi.org/10.1107/S2056989018012495
[67]  Moon, D., Takase, M., Akitsu, T. and Choi, J.-H. (2017) Crystal Structure of Bis[cis-(1,4,8,11-tetraazacyclotetradecane-κ4N)bis(thiocyanato-κN)chromium(III)] Dichromate Monohydrate from Synchrotron X-Ray Diffraction Data. Acta Crystallographica Section E, 73, 72-75.
https://doi.org/10.1107/S2056989016020120
[68]  Moon, D., Tanaka, S., Akitsu, T. and Choi, J.-H. (2015) Crystal Structure of Hexakis(urea-κO)chromium(III) Dichromate Bromide Monohydrate from Synchrotron X-Ray Data. Acta Crystallographica Section E, 71, 1336-1339.
https://doi.org/10.1107/S2056989015019258
[69]  Akitsu, T., Takeuchi, Y. and Einaga, Y. (2004) Racemic 3,5-Dichloro-2-{[(1-phenylethyl) imino]methyl}phenol. Acta Crystallographica Section C, 60, o801-o802.
https://doi.org/10.1107/S0108270104017354
[70]  Mahesha, N., Yathirajan, H.S., Furuya, T., Akitsu, T. and Glidewell, C. (2019) The Crystal Structure of 1-(2-Iodobenzoyl)-4-(pyrimidin-2-yl)piperazine: A Three-Dimensional Hydrogen-Bonded Framework, Augmented by π-π Stacking Interactions and I···N Halogen Bonds. Acta Crystallographica Section E, 75, 129-133.
https://doi.org/10.1107/S205698901801811X
[71]  Akitsu, T. and Einaga, Y. (2005) trans-Bis(2,2-diphenylethylamine-κN)bis(5,5-diphenylhydantoina-to-κN3)copper(II) and Its Chloroform Disolvate. Acta Crystallographica Section C, 61, m183-m186.
https://doi.org/10.1107/S010827010500209X
[72]  Akitsu, T. and Einaga, Y. (2004) trans-Bis(5,5-diphenylhydantoinato)bis(2-phenylethyla-mine)copper(II). Acta Crystallographica Section E, 50, m524-m526.
https://doi.org/10.1107/S1600536804007378
[73]  Baldi, P. and Hornik, K. (1989) Neural Networks and Principal Component Analysis: Learning from Examples without Local Minima. Neural Networks, 2, 53-58.
https://doi.org/10.1016/0893-6080(89)90014-2
[74]  Katsuumi, N., Onami, Y., Pradhan, S., Haraguchi, T. and Akitsu, T. (2020) Crystal Structure and Hirshfeld Sur-face Analysis of (aqua-κO)(methanol-κO)[N-(2-oxido-benzylidene)-threoninato-κ3O,N,O’]copper(II). Acta Crystallographica Section E, 76, 1539-1542.
https://doi.org/10.1107/S2056989020011706
[75]  Furuya, T., Nakane, D., Kitanishi, K., Katsuumi, N., Tsaturyan, A., Shcherbakov, I. N., Unno, M. and Akitsu, T. (2023) A Novel Hybrid Protein Composed of Superoxide-Dismutase-Active Cu(II) Complex and Lysozyme. Scientific Reports, 13, Article No. 6892.
https://doi.org/10.1038/s41598-023-33926-1
[76]  Akitsu, T., Kuroda, Y., Suda, S., Furuya, T., Haraguchi, T. and Unno, M. (2021) Weakly Non-Covalent Docking of Amino-Acid Schiff Base Zn(II) Complex to Lysozyme. Key Engineering Materials, 888, 105-110.
https://doi.org/10.4028/www.scientific.net/KEM.888.105

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133