全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Changes in Aerosol Optical Depth over the Arctic Ocean as Seen by CALIOP, MAIAC, and MODIS C6.1

DOI: 10.4236/jep.2023.146025, PP. 419-440

Keywords: Arctic Aerosol Optical Depth, Changes in Aerosol Optical Depth, Arctic Ship-Emissions Impacts on AOD, Boreal Wildfire Impacts on AOD

Full-Text   Cite this paper   Add to My Lib

Abstract:

Due to the recent increase in Arctic shipping, 2006-2020 June to October Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6.1 (C6.1), and Multi-Angle Implementation of Atmospheric Correction (MAIAC) retrieved aerosol optical depth (AOD) data were examined for changes in AOD from period 1 (P1, 2006-2012) to period 2 (P2, 2014-2020 (P2). Herein, AOD was statistically analyzed on a 0.25° × 0.25° grid and in the airsheds over the various ocean basins over the Arctic north of 59.75°N. According to heatmaps of the correlation between AOD and ship traffic, and AOD and fire emissions for the airsheds, all three AOD products captured the observed inter-annual variability in wildfire occurrence well, and showed wildfire emissions over Siberia were more severe in P2 than P1. Except for the Atlantic, North, and Baltic Seas, Beaufort Sea, and Barents Sea, all three AOD products indicated that AOD was higher over the various basins in P2 than P1, but disagreed on the magnitude. This fact suggests that the detection of changes in the typical low AOD over the Arctic Ocean might be rather qualitative than quantitative. While all products captured increases in AOD due to ships at berth, only MODIS C6.1 caught the elevated AOD due to shipping on the Siberian rivers. Obviously, sub-daily resolutions are required to capture increased AOD due to short-term events like a traveling ship or short-interval fire.

References

[1]  Law, K.S. and Stohl, A. (2007) Arctic Air Pollution: Origins and Impacts. Science, 315, 1537-1540.
https://doi.org/10.1126/science.1137695
[2]  Law, K.S., Stohl, A., Quinn, P.K., Brock, C.A., Burkhart, J.F., Paris, J.-D., Ancellet, G., Singh, H.B., Roiger, A., Schlager, H., Dibb, J.E., Jacob, D.J., Arnold, S.R., Pelon, J. and Thomas, J.L. (2014) Arctic Air Pollution: New Insights from POLARCAT-IPY. Bulletin of the American Meteorological Society, 95, 1873-1895.
https://doi.org/10.1175/BAMS-D-13-00017.1
[3]  Corbett, J.J., Lack, D.A., Winebrake, J.J., Harder, S., Silberman, A.J. and Gold, M. (2010) Arctic Shipping Emissions Inventories and Future Scenarios. Atmospheric Chemistry and Physics, 10, 9689-9704.
https://doi.org/10.5194/acp-10-9689-2010
[4]  Jacob, D.J., Crawford, J.H., Maring, H., Clarke, A.D., Dibb, J.E., Emmons, L.K., Ferrare, R.A., Hostetler, C.A., Russell, P.B., Singh, H.B., Thompson, A.M., Shaw, G.E., McCauley, E., Pederson, J.R. and Fisher, J.A. (2010) The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) Mission: Design, Execution, and First Results. Atmospheric Chemistry and Physics, 10, 5191-5212.
https://doi.org/10.5194/acp-10-5191-2010
[5]  Marelle, L., Thomas, J.L., Raut, J.-C., Law, K.S., Jalkanen, J.-P., Johansson, L., Roiger, A., Schlager, H., Kim, J., Reiter, A. and Weinzierl, B. (2015) Air Quality and Radiative Impacts of Arctic Shipping Emissions in the Summertime in Northern Norway: From the Local to the Regional Scale. Atmospheric Chemistry and Physics Discussion, 15, 18407-18457.
https://doi.org/10.5194/acpd-15-18407-2015
[6]  Seinfeld, J.H. and Pandis, S.N. (1997) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley, Hoboken.
[7]  Huang, K. and Fu, J.S. (2016) A Global Gas Flaring Black Carbon Emission Rate Dataset from 1994 to 2012. Scientific Data, 3, Article No. 160104.
https://doi.org/10.1038/sdata.2016.104
[8]  Anejionu, O.C.D., Blackburn, G.A. and Whyatt, J.D. (2015) Detecting Gas Flares and Estimating Flaring Volumes at Individual Flow Stations Using MODIS Data, Remote Sensing of Environment, 158, 81-94.
https://doi.org/10.1016/j.rse.2014.11.018
[9]  Roiger, A., Thomas, J.L., Schlager, H., Law, K.S., Kim, J., Schäfler, A., Weinzierl, B., Dahlkötter, F., Krisch, I., Marelle, L., Minikin, A., Raut, J.C., Reiter, A., Rose, M., Scheibe, M., Stock, P., Baumann, R., Bouarar, I., Clerbaux, C., George, M., Onishi, T. and Flemming, J. (2014) Quantifying Emerging Local Anthropogenic Emissions in the Arctic Region: The Access Aircraft Campaign Experiment. Bulletin of the American Meteorological Society, 96, 441-460.
https://doi.org/10.1175/BAMS-D-13-00169.1
[10]  Bai, J. (2015) The Imo Polar Code: The Emerging Rules of Arctic Shipping Governance. The International Journal of Marine and Coastal Law, 30, 674-699.
https://doi.org/10.1163/15718085-12341376
[11]  USCG (2015) Report of the Investigation into the Circumstances Surrounding the Multiple Related Casualties and Grounding of the Modu Kulluk on December 31, 2012.
https://usa.oceana.org/report-investigation-circumstances-surrounding-multiple-related-marine-casualties-and-grounding-modu/
[12]  Federal State Budgetary Institution, N.S.R.A. (2022) List of Applications.
http://www.nsra.ru/ru/rassmotrenie_zayavleniy/perechen_zayavlenii.html
[13]  National Ocean Economics Program (2017) Arctic Ocean Transportation Shipping Data by Sector.
https://oceaneconomics.org/arctic/arctic_transport/ship_search.aspx
[14]  National Ocean Economics Program (2016) Arctic Fisheries.
https://oceaneconomics.org/arctic/fisheries/
[15]  Marine Traffic (2023) MarineTraffic: Global Ship Tracking Intelligence.
https://www.marinetraffic.com/en/ais/home/
[16]  Stroeve, J., Serreze, M., Holland, M., Kay, J., Malanik, J. and Barrett, A. (2012) The Arctic’s Rapidly Shrinking Sea Ice Cover: A Research Synthesis. Climatic Change, 110, 1005-1027.
https://doi.org/10.1007/s10584-011-0101-1
[17]  Pizzolato, L., Howell, S.L., Derksen, C., Dawson, J. and Copland, L. (2014) Changing Sea Ice Conditions and Marine Transportation Activity in Canadian Arctic Waters between 1990 and 2012. Climatic Change, 123, 161-173.
https://doi.org/10.1007/s10584-013-1038-3
[18]  Onarheim, I.H., Eldevik, T., Smedsrud, L.H. and Stroeve, J.C. (2018) Seasonal and Regional Manifestation of Arctic Sea Ice Loss. Journal of Climate, 31, 4917-4932.
https://doi.org/10.1175/JCLI-D-17-0427.1
[19]  Snyder, J.M. (2007) The Polar Tourism Markets. In: Snyder, J.M. and Stonehouse, B., Eds., Prospects for Polar Tourism, CABI, Wallingford, 51-70.
https://doi.org/10.1079/9781845932473.0051
[20]  Stewart, E.J., Dawson, J., Howell, S.E.L., Johnston, M.E., Pearce, T. and Lemelin, H. (2013) Local-Level Responses to Sea Ice Change and Cruise Tourism in Arctic Canada's Northwest Passage. Polar Geography, 36, 142-162.
https://doi.org/10.1080/1088937X.2012.705352
[21]  Frey, K.E., Moore, G.W.K., Cooper, L.W. and Grebmeier, J.M. (2015) Divergent Patterns of Recent Sea Ice Cover across the Bering, Chukchi, and Beaufort Seas of the Pacific Arctic Region. Progress in Oceanography, 136, 32-49.
https://doi.org/10.1016/j.pocean.2015.05.009
[22]  Berkman, P.A., Vylegzhanin, A.N. and Young, O.R. (2016) Governing the Bering Strait Region: Current Status, Emerging Issues and Future Options. Ocean Development & International Law, 47, 186-217.
https://doi.org/10.1080/00908320.2016.1159091
[23]  Walsh, J.E., Fetterer, F., Scott Stewart, J. and Chapman, W.L. (2017) A Database for Depicting Arctic Sea Ice Variations Back to 1850. Geographical Review, 107, 89-107.
https://doi.org/10.1111/j.1931-0846.2016.12195.x
[24]  Huntington, H.P., Daniel, R., Hartsig, A., Harun, K., Heiman, M., Meehan, R., Noongwook, G., Pearson, L., Prior-Parks, M., Robards, M. and Stetson, G. (2015) Vessels, Risks, and Rules: Planning for Safe Shipping in Bering Strait. Marine Policy, 51, 119-127.
https://doi.org/10.1016/j.marpol.2014.07.027
[25]  Eckhardt, S., Hermansen, O., Grythe, H., Fiebig, M., Stebel, K., Cassiani, M., Baecklund, A. and Stohl, A. (2013) The Influence of Cruise Ship Emissions on Air Pollution in Svalbard—A Harbinger of a More Polluted Arctic? Atmospheric Chemistry and Physics, 13, 8401-8409.
https://doi.org/10.5194/acp-13-8401-2013
[26]  Zhan, L., Wu, M., Chen, L., Zhang, J., Li, Y. and Liu, J. (2017) The Air-Sea Nitrous Oxide Flux Along Cruise Tracks to the Arctic Ocean and Southern Ocean. Atmosphere, 8, Article No. 216.
http://www.mdpi.com/2073-4433/8/11/216
https://doi.org/10.3390/atmos8110216
[27]  Mölders, N., Gende, S. and Pirhalla, M.A. (2013) Assessment of Cruise-Ship Activity Influences on Emissions, Air Quality, and Visibility in Glacier Bay National Park. Atmospheric Pollution Research, 4, 435-445.
https://doi.org/10.5094/APR.2013.050
[28]  Mölders, N. and Gende, S. (2015) Impacts of Cruise-Ship Entry Quota on Visibility and Air Quality in Glacier Bay. Journal of Environmental Protection, 6, 1236-1356.
https://doi.org/10.4236/jep.2015.611109
[29]  Mölders, N., Porter, S.E., Cahill, C.F. and Grell, G.A. (2010) Influence of Ship Emissions on Air Quality and Input of Contaminants in Southern Alaska National Parks and Wilderness Areas during the 2006 Tourist Season. Atmospheric Environment, 44, 1400-1413.
https://doi.org/10.1016/j.atmosenv.2010.02.003
[30]  Corbett, J.J., Wang, H. and Winebrake, J.J. (2009) The Effectiveness and Costs of Speed Reductions on Emissions from International Shipping. Transportation Research Part D: Transport and Environment, 14, 593-598.
https://doi.org/10.1016/j.trd.2009.08.005
[31]  Ramanathan, V., Crutzen, P.J., Kiehl, J.T. and Rosenfeld, D. (2001) Aerosols, Climate, and the Hydrological Cycle. Science, 294, 2119-2124.
https://doi.org/10.1126/science.1064034
[32]  Zhang, Y., Wen, X.-Y. and Jang, C.J. (2010) Simulating Chemistry-Aerosol-Cloud-Radiation-Climate Feedbacks over the Continental U.S. Using the Online-Coupled Weather Research Forecasting Model with Chemistry (WRF/Chem). Atmospheric Environment, 44, 3568-3582.
https://doi.org/10.1016/j.atmosenv.2010.05.056
[33]  Zhao, C. and Garrett, T.J. (2015) Effects of Arctic Haze on Surface Cloud Radiative Forcing. Geophysical Research Letters, 42, 557-564.
https://doi.org/10.1002/2014GL062015
[34]  Mölders, N. (2011) Land-Use and Land-Cover Changes: Impact on Climate and Air Quality. Springer, New York, 44, 193.
https://doi.org/10.1007/978-94-007-1527-1
[35]  Quinn, P.K., Shaw, G., Andrews, E., Dutton, E.G., Ruoho-Airola, T. and Gong, S.L. (2007) Arctic Haze: Current Trends and Knowledge Gaps. Tellus B: Chemical and Physical Meteorology, 59, 99-114.
https://doi.org/10.1111/j.1600-0889.2006.00236.x
[36]  Pirhalla, M.A., Gende, S. and Mölders, N. (2014) Fate of Particulate Matter from Cruise-Ship Emissions in Glacier Bay during the 2008 Tourist Season. Journal of Environmental Protection, 4, 1235-1254.
https://doi.org/10.4236/jep.2014.512118
[37]  Mölders, N. and Kramm, G. (2018) Climatology of Air Quality in Arctic Cities—Inventory and Assessment. Open Journal of Air Pollution, 7, 48-93.
https://doi.org/10.4236/ojap.2018.71004
[38]  Holben, B.N., Eck, T.F., Slutsker, I., Tanré, D., Buis, J.P., Setzer, A., Vermote, E., Reagan, J.A., Kaufman, Y.J., Nakajima, T., Lavenu, F., Jankowiak, I. and Smirnov, A. (1998) AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sensing of Environment, 66, 1-16.
https://doi.org/10.1016/S0034-4257(98)00031-5
[39]  Smirnov, A., Holben, B.N., Slutsker, I., Giles, D.M., McClain, C.R., Eck, T.F., Sakerin, S.M., Macke, A., Croot, P., Zibordi, G., Quinn, P.K., Sciare, J., Kinne, S., Harvey, M., Smyth, T.J., Piketh, S., Zielinski, T., Proshutinsky, A., Goes, J.I., Nelson, N.B., Larouche, P., Radionov, V.F., Goloub, P., Krishna Moorthy, K., Matarrese, R., Robertson, E.J. and Jourdin, F. (2009) Maritime Aerosol Network as a Component of Aerosol Robotic Network. Journal of Geophysical Research: Atmospheres, 114.
https://doi.org/10.1029/2008JD011257
[40]  CMTS (2015) A 10-Year Projection of Maritime Activity in the U.S. Arctic Region. 73.
https://pame.is/document-library/shipping-documents/arctic-ship-traffic-data-docume
nts/reports/451-a-10-year-projection-of-maritime-activity-in-the-u-s-arctic-region/file
[41]  Winker, D.M., Hunt, W.H. and McGill, M.J. (2007) Initial Performance Assessment of CALIOP. Geophysical Research Letter, 34.
https://doi.org/10.1029/2007GL030135
[42]  Vaughan, M.A., Young, S.A., Winker, D.M., Powell, K.A., Omar, A.H., Liu, Z.Y., Hu, Y.X. and Hostetler, C.A. (2004) Fully Automated Analysis of Space-Based Lidar Data: An Overview of the CALIPSO Retrieval Algorithms and Data Products. In: Singh, U.N., Ed., Laser Radar Techniques for Atmospheric Sensing, SPIE Proceedings, Vol. 5575, SPIE, Bellingham, 16-30.
https://doi.org/10.1117/12.572024
[43]  NASA (2018) CALIPSO Data User’s Guide.
https://www-calipso.larc.nasa.gov/resources/calipso_users_guide/
[44]  Roy, D.P., Borak, J.S., Devadiga, S., Wolfe, R.E., Zheng, M. and Descloitres, J. (2002) The MODIS Land Product Quality Assessment Approach. Remote Sensing of Environment, 83, 62-76.
https://doi.org/10.1016/S0034-4257(02)00087-1
[45]  Lyapustin, A., Wang, Y., Korkin, S. and Huang, D. (2018) MODIS Collection 6 MAIAC Algorithm. Atmospheric Measurement Techniques, 11, 5741-5765.
https://doi.org/10.5194/amt-11-5741-2018
[46]  NASA (2019) MODIS MAIAC Data Collection.
https://lpdaac.usgs.gov/products/mcd19a2v006
[47]  Remer, L.A., Mattoo, S., Levy, R.C. and Munchak, L.A. (2013) MODIS 3 km Aerosol Product: Algorithm and Global Perspective. Atmospheric Measurement Techniques, 6, 1829-1844.
https://doi.org/10.5194/amt-6-1829-2013
[48]  Winker, D.M., Vaughan, M.A., Omar, A., Hu, Y., Powell, K.A., Liu, Z., Hunt, W.H. and Young, S.A. (2009) Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. Journal of Atmospheric and Oceanic Technology, 26, 2310-2323.
https://doi.org/10.1175/2009JTECHA1281.1
[49]  Mölders, N. and Friberg, M. (2023) June to October Aerosol Optical Depth over the Arctic at Various Spatial and Temporal Scales in MODIS, MAIAC, CALIOP and GOES Data. Open Journal of Air Pollution, 12, 1-29.
https://doi.org/10.4236/ojap.2023.121001
[50]  NSIDC: National Snow and Ice Data Center (2010) Multisensor Analyzed Sea Ice Extent—Northern Hemisphere (MASIE-NH), Version 1, National Snow and Ice Data Center, Boulder, Colorado.
[51]  Randerson, J.T., van der Werf, G.R., Giglio, L., Collatz, G.J. and Kasibhatla, P.S. (2018) Global Fire Emissions Database, Version 4.1 (GFEDv4), Oak Ridge National Lab, Oak Ridge.
[52]  Mölders, N. and Friberg, M. (2020) Using MAN and Coastal AERONET Measurements to Assess the Suitability of MODIS C6.1 Aerosol Optical Depth for Monitoring Changes from Increased Arctic Shipping. Open Journal of Air Pollution, 9, 77-104.
https://doi.org/10.4236/ojap.2020.94006
[53]  Mölders, N. and Edwin, S.G. (2018) Review of Black Carbon in the Arctic: Origin, Measurement Methods, and Observations. Open Journal of Air Pollution, 7, 181-213.
https://doi.org/10.4236/ojap.2018.72010

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133