全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于OpenFOAM的高温熔融锡液水力碎化数值模拟研究
Numerical Simulation of Hydraulic Fragmentation of High-Temperature Molten Tin Based on OpenFOAM

DOI: 10.12677/IJFD.2023.112005, PP. 45-56

Keywords: 高温熔融金属,水力碎化,计算流体力学,OpenFoam模拟
High-Temperature Molten Metal
, Hydraulic Fragmentation, Computational Fluid Dynamics, Numerical Simulation Based on OpenFOAM

Full-Text   Cite this paper   Add to My Lib

Abstract:

为揭示高温熔融锡液与水相互作用过程中的碎化机理,基于开源软件包OpenFOAM?-v1806下的求解器icoReactingMultiphaseInterFoam模拟熔融锡液入水后的水力碎化过程,分析瑞利–泰勒不稳定性、开尔文–亥姆霍兹不稳定性及界面剪切力对熔融锡液柱碎化过程作用过程,探究水力碎化对液柱直径及液柱入水初速度对碎化剧烈程度的影响。研究表明液柱碎化剧烈程度、液柱单位时间内入水深度与液柱直径成反比,液柱入水后碎化剧烈程度、锡凝固速度与液柱入水时初速度成正比。
In order to reveal the mechanism of fragmentation during the interaction between high-temperature molten tin and water, the icoReactingMultiphaseInterFoam solver within Open-FOAM?-v1806 was used to simulate the hydraulic fragmentation process of molten tin entering water. The effects of Rayleigh-Taylor instability, Kelvin-Helmholtz instability and interfacial shear force on the fragmentation process of molten tin were analyzed. And the sensitivity of the degree of fragmentation to the diameter of the liquid column and the initial velocity of the liquid column entering the water was explored. Research shows that the degree of fragmentation of the liquid column and underwater penetration in unit time are inversely proportional to the diameter of the liquid column. Meanwhile, the degree of fragmentation and the formation rate of solid tin are proportional to the initial speed of the liquid column entering water.

References

[1]  周源. 蒸汽爆炸中熔融金属液滴热碎化机理及模型研究[D]: [博士学位论文]. 上海: 上海交通大学, 2014: 3-131.
[2]  袁明豪. 蒸汽爆炸相关现象机理的数值模拟研究[D]: [博士学位论文]. 上海: 上海交通大学, 2008: 1-106.
[3]  杨志. 钠冷快堆堆芯熔融材料-液态钠相互作用破碎特性及机理研究[D]: [博士学位论文]. 哈尔滨: 哈尔滨工程大学, 2020: 19-110.
[4]  钟明君. 熔融物与冷却剂相互作用过程及熔融物水力学碎化行为的数值模拟研究[D]: [博士学位论文]. 上海: 上海交通大学, 2016: 1-121.
[5]  沈正祥, 李金柱, 吕中杰, 等. 水动力作用下低速射流碎化的数值模拟[J]. 计算力学学报, 2013, 30(2): 308-312.
[6]  商晓波. 湿式离合器接合过程理论分析及试验研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2019: 8-64.
[7]  毛菊珍. 欧拉模型中多烟雾自由融合实时绘制算法研究[D]: [硕士学位论文]. 秦皇岛: 燕山大学, 2016: 8-16.
[8]  Zientara, M., Jakubczyk, D., Litniewski, M., et al. (2013) Transport of Mass at the Nanoscale during Evaporation of Droplets: The Hertz-Knudsen Equation at the Nanoscale. The Journal of Physical Chemistry C, 117, 1146-1150.
https://doi.org/10.1021/jp3091478
[9]  金明善, 李文佐, 宫宝安, 等. Clausius-Clapeyron方程在解题中的应用[J]. 大学化学, 2011, 26(1): 3.
[10]  Roohi, E., Zahiri, A.P. and Passandideh-Fard, M. (2013) Numerical Simulation of Cavitation around a Two-Dimen- sional Hydrofoil Using VOF Method and LES Turbulence Model. Applied Mathemat-ical Modelling, 37, 6469-6488.
https://doi.org/10.1016/j.apm.2012.09.002
[11]  陈竞覃, 周源, 汪杨乐, 等. 气腔夹带作用下射流碎化过程实验研究[J]. 核动力工程, 2019, 40(S2): 26-30.
[12]  Iwasawa, Y., Abe, Y., Kaneko, A., et al. (2012) Jet Breakup Be-havior with Surface Solidification. 2012 20th International Conference on Nuclear Engineering and the ASME 2012 Power Conference, Anaheim, July 30-August 3, 2012, 175-184.
https://doi.org/10.1115/ICONE20-POWER2012-54412

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133