全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

肠道菌群在急性髓系白血病中的研究进展
Advances in the Study of Intestinal Flora in Acute Myeloid Leukemia

DOI: 10.12677/ACM.2023.1361284, PP. 9170-9176

Keywords: 肠道菌群,急性髓系白血病,治疗,益生菌
Intestinal Flora
, Acute Myeloid Leukemia, Treatment, Probiotics

Full-Text   Cite this paper   Add to My Lib

Abstract:

急性髓系白血病是一种起源于造血干细胞/祖细胞的恶性克隆性疾病,是成人白血病中最常见的类型。肠道菌群是人体微生物最大、最复杂群落,与人体的正常的生命活动、内环境的稳定及免疫系统密切相关。研究发现,肠道菌群与AML之间存在相互作用。近年来研究发现,肠道菌群通过多种机制影响AML的发生,并与其治疗、预后及预防均有着密切的关系。本文就肠道菌群对AML的发生、治效及预后的影响及相关机制进行综述,旨在为AML的治疗和预防提供新思路。
Acute myeloid leukemia is a malignant clonal disease that originates from hematopoietic stem/pro genitor cells and is the most common type of adult leukemia. The intestinal flora is the largest and most complex community of microorganisms in the human body, and is closely related to the nor-mal life activities, stability of the internal environment and immune system. It has been found that there is an interaction between intestinal flora and AML. Recent studies have found that intestinal flora affects the occurrence of AML through various mechanisms, and has a close relationship with its treatment, prognosis and prevention. In this paper, we review the effects of intestinal flora on the occurrence, treatment and prognosis of AML and the related mechanisms, aiming to provide new ideas for the treatment and prevention of AML.

References

[1]  Zhai, H., Zhao, J., Pu, J., et al. (2021) LncRNA-DUXAP8 Regulation of the Wnt/beta-Catenin Signaling Pathway to In-hibit Glycolysis and Induced Apoptosis in Acute Myeloid Leukemia. Turkish Journal of Haematology, 38, 264-272.
https://doi.org/10.4274/tjh.galenos.2021.2020.0769
[2]  Allison, M., Mathews, J., Gilliland, T., et al. (2022) Nat-ural Killer Cell-Mediated Immunotherapy for Leukemia. Cancers (Basel), 14, Article No. 843.
https://doi.org/10.3390/cancers14030843
[3]  Sarin, S.-K., Pande, A. and Schnabl, B. (2019) Microbiome as a Therapeutic Target in Alcohol-Related Liver Disease. Journal of Hepatology, 70, 260-272.
https://doi.org/10.1016/j.jhep.2018.10.019
[4]  Landman, C. and Quevrain, E. (2016) Gut Microbiota: Description, Role and Pathophysiologic Implications. La Revue de Médecine Interne, 37, 418-423.
https://doi.org/10.1016/j.revmed.2015.12.012
[5]  Grandt, C.-L., Brackmann, L.-K., Poplawski, A., et al. (2022) Radiation-Response in Primary Fibroblasts of Long-Term Survivors of Childhood Cancer with and without Second Pri-mary Neoplasms: The KiKme Study. Molecular Medicine, 28, Article No. 105.
https://doi.org/10.1186/s10020-022-00520-6
[6]  Rothschild, D., Weissbrod, O., Barkan, E., et al. (2018) Envi-ronment Dominates over Host Genetics in Shaping Human Gut Microbiota. Nature, 555, 210-215.
https://doi.org/10.1038/nature25973
[7]  DeFilipp, Z., Hohmann, E., Jenq, R.-R., et al. (2019) Fecal Microbiota Transplantation: Restoring the Injured Microbiome after Allogeneic Hematopoietic Cell Transplantation. Biology of Blood and Marrow Transplantation, 25, e17-e22.
https://doi.org/10.1016/j.bbmt.2018.10.022
[8]  Vivarelli, S., Salemi, R., Candido, S., et al. (2019) Gut Microbiota and Cancer: From Pathogenesis to Therapy. Cancers (Basel), 11, Article No. 38.
https://doi.org/10.3390/cancers11010038
[9]  Marcotte, E.-L., Richardson, M.-R., Roesler, M.-A., et al. (2018) Cesarean Delivery and Risk of Infant Leukemia: A Report from the Children’s Oncology Group. Cancer Epide-miology, Biomarkers & Prevention, 27, 473-478.
https://doi.org/10.1158/1055-9965.EPI-17-0778
[10]  Zhou, Y.-J., Zhao, D.-D., Liu, H., et al. (2017) Cancer Killers in the Human Gut Microbiota: Diverse Phylogeny and Broad Spectra. Oncotarget, 8, 49574-49591.
https://doi.org/10.18632/oncotarget.17319
[11]  Ostgard, L.S.G., Norgaard, M., Pedersen, L., et al. (2018) Auto-immune Diseases, Infections, Use of Antibiotics and the Risk of Acute Myeloid Leukaemia: A National Popula-tion-Based Case-Control Study. British Journal of Haematology, 181, 205-214.
https://doi.org/10.1111/bjh.15163
[12]  Chiba, S. (2016) Significance of TET2 Mutations in Myeloid and Lymphoid Neoplasms. Rinsho Ketsueki, 57, 715-722.
[13]  Meisel, M., Reinhard, H., Alain, P., et al. (2018) Microbial Signals Drive Pre-Leukaemic Myeloproliferation in a Tet2-Deficient Host. Nature (London), 557, 580-584.
https://doi.org/10.1038/s41586-018-0125-z
[14]  Zhang, Y., Yu, X., Lin, D., et al. (2017) Propiece IL-1alpha Facil-itates the Growth of Acute T-Lymphocytic Leukemia Cells through the Activation of NF-kappaB and SP1. Oncotarget, 8, 15677-15688.
https://doi.org/10.18632/oncotarget.14934
[15]  Mauray, A., Felgines, C., Morand, C., et al. (2010) Bilberry An-thocyanin-Rich Extract Alters Expression of Genes Related to Atherosclerosis Development in Aorta of apo E-Deficient Mice. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD, 22, 72-80.
[16]  Willemsen, M.L.-E. (2003) Short Chain Fatty Acids Stimulate Epithelial Mucin 2 Expression through Differential Effects on Prostaglandin E1 and E2 Production by Intestinal Myofibroblasts. Gut, 52, 1442-1447.
https://doi.org/10.1136/gut.52.10.1442
[17]  Illiano, P., Brambilla, R. and Parolini, C. (2020) The Mutual Interplay of Gut Microbiota, Diet and Human Disease. FEBS Journal, 287, 833-855.
https://doi.org/10.1111/febs.15217
[18]  Bai, L., Zhou, P., Li, D., et al. (2017) Changes in the Gastrointestinal Mi-crobiota of Children with Acute Lymphoblastic Leukaemia and Its Association with Antibiotics in the Short Term. Jour-nal of Medical Microbiology, 66, 1297-1307.
https://doi.org/10.1099/jmm.0.000568
[19]  Galloway-Pena, J.-R., Smith, D.-P., Sahasrabhojane, P., et al. (2016) The Role of the Gastrointestinal Microbiome in Infectious Complications during Induction Chemotherapy for Acute My-eloid Leukemia. Cancer, 122, 2186-2196.
https://doi.org/10.1002/cncr.30039
[20]  Galloway-Pena, J.-R., Smith, D.-P., Sahasrabhojane, P., et al. (2017) Characterization of Oral and Gut Microbiome Temporal Variability in Hospitalized Cancer Patients. Genome Medicine, 9, Article No. 21.
https://doi.org/10.1186/s13073-017-0409-1
[21]  Ziegler, M., Han, J.-H., Landsburg, D., et al. (2019) Impact of Levofloxacin for the Prophylaxis of Bloodstream Infection on the Gut Microbiome in Patients with Hematologic Malig-nancy. Open Forum Infectious Diseases, 6, z252.
https://doi.org/10.1093/ofid/ofz252
[22]  Lee, S., Ritchie, E.-K., Miah, S., et al. (2019) Changes in Gut Microbial Diversity and Correlations with Clinical Outcomes in Patients with Newly Diagnosed Acute Myeloid Leukemia (AML) Receiving Intensive Chemotherapy. Blood, 134, Article No. 1336.
https://doi.org/10.1182/blood-2019-125441
[23]  Gyarmati, P., Kjellander, C., Aust, C., et al. (2016) Metagenomic Analysis of Bloodstream Infections in Patients with Acute Leukemia and Therapy-Induced Neutropenia. Scientific Re-ports, 6, Article No. 23532.
https://doi.org/10.1038/srep23532
[24]  Rashidi, A., Kaiser, T., Shields-Cutler, R., et al. (2019) Dysbiosis Patterns during Re-Induction/Salvage versus Induction Chemotherapy for Acute Leukemia. Scientific Reports, 9, Article No. 6083.
https://doi.org/10.1038/s41598-019-42652-6
[25]  van Vliet, M.-J., Tissing, W.-J., Dun, C.-A., et al. (2009) Chem-otherapy Treatment in Pediatric Patients with Acute myeloid Leukemia Receiving Antimicrobial Prophylaxis Leads to a Relative Increase of Colonization with Potentially Pathogenic Bacteria in the Gut. Clinical Infectious Diseases, 49, 262-270.
https://doi.org/10.1086/599346
[26]  Kato, S., Hamouda, N., Kano, Y., et al. (2017) Probiotic Bifidobac-terium Bifidum G9-1 Attenuates 5-Fluorouracil-Induced Intestinal Mucositis in Mice via Suppression of Dysbio-sis-Related Secondary Inflammatory Responses. Clinical and Experimental Pharmacology and Physiology, 44, 1017-1025.
https://doi.org/10.1111/1440-1681.12792
[27]  Eriguchi, Y., Takashima, S., Oka, H., et al. (2012) Graft-versus-Host Disease Disrupts Intestinal Microbial Ecology by Inhibiting Paneth Cell Production of Al-pha-Defensins. Blood, 120, 223-231.
https://doi.org/10.1182/blood-2011-12-401166
[28]  Jenq, R.-R., Taur, Y., Devlin, S.-M., et al. (2015) Intestinal Blautia Is Associated with Reduced Death from Graft- versus-Host Disease. Biology of Blood and Marrow Transplanta-tion, 21, 1373-1383.
https://doi.org/10.1016/j.bbmt.2015.04.016
[29]  Mathewson, N.-D., Jenq, R., Mathew, A.-V., et al. (2016) Gut Microbiome-Derived Metabolites Modulate Intestinal Epithelial Cell Damage and Mitigate Graft-versus-Host Disease. Nature Immunology, 17, 505-513.
https://doi.org/10.1038/ni.3400
[30]  Mohty, M., Malard, F., D’Incan, E., et al. (2017) Prevention of Dysbiosis Complications with Autologous Fecal Microbiota Transplantation (auto-FMT) in Acute Myeloid Leukemia (AML) Pa-tients Undergoing Intensive Treatment (ODYSSEE Study): First Results of a Prospective Multicenter Trial. Blood, 130, Article No. 2624.
https://doi.org/10.1182/blood-2018-99-112825
[31]  Mohty, M., Malard, F., Vekhoff, A., et al. (2018) The Odys-see Study: Prevention of Dysbiosis Complications with Autologous Fecal Microbiota Transfer (FMT) in Acute Myeloid Leukemia (AML) Patients Undergoing Intensive Treatment: Results of a Prospective Multicenter Trial. Blood: The Jour-nal of the American Society of Hematology, 132, Article No. 1444.
https://doi.org/10.1182/blood-2018-99-112825
[32]  DeFilipp, Z., Peled, J.-U., Li, S., et al. (2018) Third-Party Fe-cal Microbiota Transplantation Following allo-HCT Reconstitutes Microbiome Diversity. Blood Advances, 2, 745-753.
https://doi.org/10.1182/bloodadvances.2018017731
[33]  Bilinski, J., Grzesiowski, P., Sorensen, N., et al. (2017) Fecal Microbiota Transplantation in Patients with Blood Disorders Inhibits Gut Colonization with Antibiotic-Resistant Bacteria: Results of a Prospective, Single-Center Study. Clinical Infectious Diseases, 65, 364-370.
https://doi.org/10.1093/cid/cix252
[34]  Kaito, S., Toya, T., Yoshifuji, K., et al. (2018) Fecal Microbiota Transplan-tation with Frozen Capsules for a Patient with Refractory Acute Gut Graft-versus-Host Disease. Blood Advances, 2, 3097-3101.
https://doi.org/10.1182/bloodadvances.2018024968
[35]  Koontz, J.-M., Dancy, B.C.R., Horton, C.-L., et al. (2019) The Role of the Human Microbiome in Chemical Toxicity. International Journal of Toxicology, 38, 251-264.
https://doi.org/10.1177/1091581819849833
[36]  Ma, W., Mao, Q., Xia, W., et al. (2019) Gut Microbiota Shapes the Efficiency of Cancer Therapy. Frontiers in Microbiology, 10, Article No. 1050.
https://doi.org/10.3389/fmicb.2019.01050
[37]  Alexander, J.-L., Wilson, I.-D., Teare, J., et al. (2017) Gut Micro-biota Modulation of Chemotherapy Efficacy and Toxicity. Nature Reviews Gastroenterology & Hepatology, 14, 356-365.
https://doi.org/10.1038/nrgastro.2017.20
[38]  Huang, K., Liu, Y., Tang, H., et al. (2019) Glabridin Prevents Dox-orubicin-Induced Cardiotoxicity through Gut Microbiota Modulation and Colonic Macrophage Polarization in Mice. Frontiers in Pharmacology, 10, Article No. 107.
https://doi.org/10.3389/fphar.2019.00107
[39]  Urushiyama, D., Suda, W., Ohnishi, E., et al. (2017) Microbiome Profile of the Amniotic Fluid as a Predictive Biomarker of Perinatal Outcome. Scientific Reports, 7, Article No. 12171.
https://doi.org/10.1038/s41598-017-11699-8
[40]  Bajaj, J.-S., Thacker, L.-R., Fagan, A., et al. (2018) Gut Micro-bial RNA and DNA Analysis Predicts Hospitalizations in Cirrhosis. JCI Insight, 3, Article No. 98019.
https://doi.org/10.1172/jci.insight.98019
[41]  Mego, M., Holec, V., Drgona, L., et al. (2013) Probiotic Bacteria in Cancer Patients Undergoing Chemotherapy and Radiation Therapy. Complementary Therapies in Medicine, 21, 712-723.
https://doi.org/10.1016/j.ctim.2013.08.018
[42]  Reyna-Figueroa, J., Barron-Calvillo, E., Garcia-Parra, C., et al. (2019) Probiotic Supplementation Decreases Chemotherapy-Induced Gastrointestinal Side Effects in Patients with Acute Leukemia. Journal of Pediatric Hematology/Oncology, 41, 468-472.
https://doi.org/10.1097/MPH.0000000000001497
[43]  Gerbitz, A., Schultz, M., Wilke, A., et al. (2004) Probiotic Effects on Experimental Graft-versus-Host Disease: Let Them Eat Yogurt. Blood, 103, 4365-4367.
https://doi.org/10.1182/blood-2003-11-3769
[44]  Redman, M.-G., Ward, E.-J. and Phillips, R.-S. (2014) The Effi-cacy and Safety of Probiotics in People with Cancer: A Systematic Review. Annals of Oncology, 25, 1919-1929.
https://doi.org/10.1093/annonc/mdu106
[45]  Evrensel, A. and Ceylan, M.-E. (2016) Fecal Microbiota Transplanta-tion and Its Usage in Neuropsychiatric Disorders. Clinical Psychopharmacology and Neuroscience, 14, 231-237.
https://doi.org/10.9758/cpn.2016.14.3.231
[46]  Scher, J.-U., Ubeda, C., Artacho, A., et al. (2015) Decreased Bac-terial Diversity Characterizes the Altered Gut Microbiota in Patients with Psoriatic Arthritis, Resembling Dysbiosis in In-flammatory Bowel Disease. Arthritis & Rheumatology, 67, 128-139.
https://doi.org/10.1002/art.38892

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133