|
海藻酸的功能化改性
|
Abstract:
海藻酸是从褐藻中提取的一种海洋源生物高分子,广泛应用于食品配料、医卫材料、生物工程、纺织工程、功能助剂等领域。为了推广海藻酸在更多领域的应用、改善其使用功效,本文总结了通过酯化、氧化、磷酸化、硫酸化、酰胺化、接枝共聚等改性技术获得的各种海藻酸衍生制品的结构、性能和应用。结果显示功能化改性过程中产生的结构多样性有效提高了海藻酸的性能和使用功效,对新产品开发有重要的应用价值。
Alginate is a marine biopolymer extracted from brown seaweeds that is widely used in food ingredients, biomedical materials, bio-engineering, textile en-gineering, functional additives and many other industries. In order to promote the applications of alginate in more fields and improve its efficacy, this paper summarized the structure, properties and applications of various alginate derived products obtained through functional modifications such as esterification, oxidation, phosphorylation, sulfation, amidation and graft co-polymerization. Results showed that the structural diversity generated during the functional modification process can effectively improve the properties and efficacy of alginate, which is highly valuable for new product development.
[1] | 秦益民, 刘洪武, 李可昌, 等. 海藻酸的功能与应用[M]. 北京: 中国轻工业出版社, 2023. |
[2] | Lee, K.Y. and Mooney, D.J. (2012) Alginate: Properties and Biomedical Applications. Progress in Polymer Science, 37, 106-126. https://doi.org/10.1016/j.progpolymsci.2011.06.003 |
[3] | Timell, T.E. (1964) The Acid Hydrolysis of Glycosides: I. General Conditions and the Effect of the Nature of the Aglycone. Canadian Journal of Chemistry, 42, 1456-1459. https://doi.org/10.1139/v64-221 |
[4] | Smidsrod, O., Haug, A. and Larsen, B. (1966) The Influence of pH on the Rate of Hydrolysis of Acidic Polysaccharides. Acta Chemica Scandinavica, 20, 1026-1034. https://doi.org/10.3891/acta.chem.scand.20-1026 |
[5] | Tsujino, I. and Saito, T. (1961) A New Unsaturated Uronide Isolated from Alginase Hydrolysate. Nature, 192, 970-971. https://doi.org/10.1038/192970a0 |
[6] | Haug, A., Larsen, B. and Smidsrod, O. (1963) The Degradation of Alginates at Different pH Values. Acta Chemica Scandinavica, 17, 1466-1468. https://doi.org/10.3891/acta.chem.scand.17-1466 |
[7] | Haug, A., Larsen, B. and Smidsrod, O. (1967) Alkaline Degradation of Alginate. Acta Chemica Scandinavica, 21, 2859-2870. https://doi.org/10.3891/acta.chem.scand.21-2859 |
[8] | Smidsrod, O., Haug, A. and Larsen, B. (1963) The Influence of Reducing Substances on the Rate of Degradation of Alginates. Acta Chemica Scandinavica, 17, 1473-1474. https://doi.org/10.3891/acta.chem.scand.17-1473 |
[9] | Leo, W.J., Mcloughlin, A.J. and Malone, D.M. (1990) Ef-fects of Sterilization Treatments on Some Properties of Alginate Solutions and Gels. Biotechnology Progress, 6, 51-53. https://doi.org/10.1021/bp00001a008 |
[10] | Stanford, E.C.C. (1881) Improvements in the Manufacture of Useful Products from Seaweeds. British Patent No. 142. |
[11] | Steiner, A.B. (1974) Manufacture of Glycol Alginates. US Patent No. 2426215. |
[12] | 黄攀丽, 沈晓骏, 陈京环, 吴玉英, 孙润仓. 海藻酸钠的提取与功能化改性研究进展[J]. 林产化学与工业, 2017, 37(4): 13-22. |
[13] | Gomez, C.G., Rinaudo, M. and Villar, M.A. (2007) Oxidation of Sodium Algi-nate and Characterization of the Oxidized Derivatives. Carbohydrate Polymers, 67, 296-304. https://doi.org/10.1016/j.carbpol.2006.05.025 |
[14] | 秦益民. 一种氧化海藻酸钠改性的甲壳胺纤维及其制备方法和应用[P]. 中国专利. Zl201310127978.X. 2014-08-20. |
[15] | Huang, R., Du, Y. and Yang, J. (2003) Preparation and in vitro Anticoagulant Activities of Alginate Sulfate and Its Quaterized Derivatives. Carbohydrate Polymers, 52, 19-24. https://doi.org/10.1016/S0144-8617(02)00258-8 |
[16] | Freeman, I., Kedem, A. and Cohen, S. (2008) The Effect of Sulfation of Alginate Hydrogels on the Specific Binding and Controlled Release of Heparin-Binding Proteins. Biomaterials, 29, 3260-3268.
https://doi.org/10.1016/j.biomaterials.2008.04.025 |
[17] | Fan, L., Jiang, L., Xu, Y., Yue, Z., Yuan, S., Xie, W., Long, Z. and Zhou, J. (2011) Synthesis and Anticoagulant Activity of Sodium Alginate Sulfates. Carbohydrate Polymers, 83, 1797-1803. https://doi.org/10.1016/j.carbpol.2010.10.038 |
[18] | Carre, M.C., Delestre, C., Hubert, P. and Dellacherie, E. (1991) Covalent Coupling of a Short Polyether on Sodium Alginate: Synthesis and Characterization of the Resulting Amphiphilic Derivative. Carbohydrate Polymers, 16, 367-379. https://doi.org/10.1016/0144-8617(91)90055-H |
[19] | Chen, X.Q., Yan, H.Q. and Sun, W. (2015) Synthesis of Amphiphilic Alginate Derivatives and Electrospinning Blend Nanofibers: A Novel Hydrophobic Drug Carrier. Polymer Bulletin, 72, 3097-3117.
https://doi.org/10.1007/s00289-015-1455-8 |
[20] | Abu-Rabeah, K., Polyak, B., Ionescu, R.E., Cosnier, S. and Marks, R.S. (2005) Synthesis and Characterization of a Pyrrole—Alginate Conjugate and Its Application. Biomacromol-ecules, 6, 3313-3318.
https://doi.org/10.1021/bm050339j |
[21] | Shah, S.B., Patel, C.P. and Trivedi, H.C. (1995) Ceric-Induced Grafting of Acrylate Monomers onto Sodium Alginate. Carbohydrate Polymers, 26, 61-67. https://doi.org/10.1016/0144-8617(95)98836-6 |
[22] | Kulkarni, R.V., Setty, C.M. and Sa, B. (2010) Polyacryla-mide-g-Alginate Based Electrically Responsive Hydrogel for Drug Delivery Application: Synthesis, Characterization, and Formulation Development. Journal of Applied Polymer Science, 115, 1180-1188. https://doi.org/10.1002/app.31203 |
[23] | Pluemsab, W., Sakairi, N. and Furuike, T. (2005) Synthesis and Inclusion Property of a Cyclodextrin-Linked Alginate. Polymer, 46, 9778-9883. https://doi.org/10.1016/j.polymer.2005.08.005 |
[24] | Chehardoli, G., Bagheri, H. and Firozian, F. (2019) Synthesis of Sodium Alginate Grafted Stearate Acid (NaAlg-g-St) and Evaluation of the Polymer as Drug Release Controlling Ma-trix. Journal of Polymer Research, 26, 175-181.
https://doi.org/10.1007/s10965-019-1840-3 |
[25] | Grasselli, M., Diaz, L.E. and Cascone, O. (1993) Beaded Matrices from Cross-Linked Alginate for Affinity and Ion Exchange Chromatography of Proteins. Biotechnology Techniques, 7, 707-712. https://doi.org/10.1007/BF00152617 |
[26] | Yeom, C.K. and Lee, K.H. (1998) Characterization of Sodium Alginate Membrane Crosslinked with Glutaraldehyde in Pervaporation Separation. Journal of Applied Polymer Science, 67, 209-219.
https://doi.org/10.1002/(SICI)1097-4628(19980110)67:2<209::AID-APP3>3.0.CO;2-Y |
[27] | Kim, Y.J., Yoon, K.J. and Ko, S.W. (2000) Preparation and Properties of Alginate Superabsorbent Filament Fibers Crosslinked with Glu-taraldehyde. Journal of Applied Polymer Science, 78, 1797-1804.
https://doi.org/10.1002/1097-4628(20001205)78:10<1797::AID-APP110>3.0.CO;2-M |
[28] | Leone, G., Torricelli, P., Chiumiento, A., Facchini, A. and Barbucci, R. (2008) Amidic Alginate Hydrogel for Nucleus Pulposus Replacement. Journal of Biomedical Materials Research Part A, 84A, 391-401.
https://doi.org/10.1002/jbm.a.31334 |
[29] | Xu, J.B., Bartley, J.P. and Johnson, R.A. (2003) Preparation and Charac-terization of Alginate Hydrogel Membranes Crosslinked Using a Water-Soluble Carbodiimide. Journal of Applied Poly-mer Science, 90, 747-753.
https://doi.org/10.1002/app.12713 |
[30] | Donati, I., Draget, K.I. and Borgogna, M. (2005) Tailor-Made Alginate Bearing Galactose Moieties on Mannuronic Residues: Selective Modification Achieved by a Chemoenzymatic Strategy. Biomacromolecules, 6, 88-98.
https://doi.org/10.1021/bm040053z |
[31] | Yang, J., Goto, M., Ise, H. and Cho, C.S. (2002) Galactosylated Alginate as a Scaffold for Hepatocytes Entrapment. Biomaterials, 23, 471-479. https://doi.org/10.1016/S0142-9612(01)00129-6 |
[32] | Pawar, S.N. and Edgar, K.J. (2012) Alginate Derivatization: A Review of Chemistry, Properties and Applications. Biomaterials, 33, 3279-3305. https://doi.org/10.1016/j.biomaterials.2012.01.007 |