全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

IDH1/2基因突变与急性髓系白血病的关系及作用的研究进展
Research Progress in the Relationship and Role of IDH1/2 Gene Mutation and Acute My-eloid Leukemia

DOI: 10.12677/ACM.2023.1361289, PP. 9202-9210

Keywords: 急性髓系白血病,IDH,抑制剂,预后
Acute Myeloid Leukemia
, IDH, Inhibitor, Prognosis

Full-Text   Cite this paper   Add to My Lib

Abstract:

异柠檬酸脱氢酶(Isocitrate dehydrogenase, IDH)是三羧酸循环(Tricarboxylic acid cycle, TCA)中细胞呼吸的必需酶,在细胞代谢的过程中发挥重要作用。越来越多的证据表明IDH同血液系统恶性肿瘤的发生密切相关,研究发现IDH是急性髓系白血病(Acute myeloid leukemia, AML)的重要驱动基因,对AML的预后,疗效监测及靶向治疗具有重要的影响。本文将对IDH在AML方面的研究进展作一综述。
Isocitrate dehydrogenase (IDH) is essential for cellular metabolism by functioning as an essential enzyme for cellular respiration in the tricarboxylic acid (TCA) cycle. The high correlation between IDH and the development of hematological malignancies has been confirmed by a mounting amount of data. As an important driven gene in acute myeloid leukaemia (AML), the study of IDH has im-portant implications for the prognosis, monitoring of efficacy and targeted therapy in AML. In this article, we mainly summary and review the progress of IDH research in AML.

References

[1]  D?hner, H., Wei, A.H., Appelbaum, F.R., Craddock, C., DiNardo, C.D., Dombret, H., Ebert, B.L., Fenaux, P., Godley, L.A., Hasserjian, R.P., et al. (2022) Diagnosis and Management of AML in Adults: 2022 Recommendations from an In-ternational Expert Panel on Behalf of the ELN. Blood, 140, 1345-1377.
https://doi.org/10.1182/blood.2022016867
[2]  Gross, S., Cairns, R.A., Minden, M.D., Driggers, E.M., Bittinger, M.A., Jang, H.G., Sasaki, M., Jin, S., Schenkein, D.P., Su, S.M., et al. (2010) Cancer-Associated Metabolite 2-Hydroxyglutarate Accumulates in Acute Myelogenous Leukemia with Isocitrate Dehydrogenase 1 and 2 Mutations. Journal of Experimental Medicine, 207, 339-344.
https://doi.org/10.1084/jem.20092506
[3]  DiNardo, C.D., Propert, K.J., Loren, A.W., Paietta, E., Sun, Z., Levine, R.L., Straley, K.S., Yen, K., Patel, J.P., Agresta, S., et al. (2013) Serum 2-Hydroxyglutarate Levels Predict Isocitrate Dehydrogenase Mutations and Clinical Outcome in Acute Myeloid Leukemia. Blood, 121, 4917-4924.
https://doi.org/10.1182/blood-2013-03-493197
[4]  Dang, L., Yen, K. and Attar, E.C. (2016) IDH Mutations in Cancer and Progress toward Development of Targeted Therapeutics. Annals of Oncolog, 27, 599-608.
https://doi.org/10.1093/annonc/mdw013
[5]  Jiang, L., Shestov, A.A., Swain, P., Yang, C., Parker, S.J., Wang, Q.A., Terada, L.S., Adams, N.D., McCabe, M.T., Pietrak. B., et al. (2016) Reductive Carboxylation Supports Redox Homeostasis during Anchorage-Independent Growth. Nature, 532, 255-258.
https://doi.org/10.1038/nature17393
[6]  Figueroa, M.E., Abdel-Wahab, O., Lu, C., Ward, P.S., Patel, J., Shih, A., Li, Y., Bhagwat, N., Vasanthakumar, A., Fernandez, H.F., et al. (2010) Leukemic IDH1 and IDH2 Mutations Result in a Hypermethylation Phenotype, Disrupt TET2 Function, and Impair Hematopoietic Differentiation. Cancer Cell, 18, 553-567.
https://doi.org/10.1016/j.ccr.2010.11.015
[7]  Rakheja, D., Medeiros, L.J., Bevan, S. and Chen, W. (2013) The Emerging Role of D-2-Hydroxyglutarate as an Oncometabolite in Hematolymphoid and Central Nervous System Neo-plasms. Frontiers in Oncology, 3, Article 169.
https://doi.org/10.3389/fonc.2013.00169
[8]  Kranendijk, M., Struys, E.A., van Schaftingen, E., Gibson, K.M., Kanhai, W.A., van der Knaap, M.S., Amiel, J., Buist, N.R., Das, A.M., de Klerk, J.B., et al. (2010) IDH2 Mutations in Patients with D-2-Hydroxyglutaric Aciduria. Science, 330, 336.
https://doi.org/10.1126/science.1192632
[9]  Mardis, E.R., Ding, L., Dooling, D.J., Larson, D.E., McLellan, M.D., Chen, K., Koboldt, D.C., Fulton, R.S., Delehaunty, K.D., McGrath, S.D., et al. (2009) Recurring Mutations Found by Sequencing an Acute Myeloid Leukemia Genome. The New England Journal of Medicine, 361, 1058-1066.
https://doi.org/10.1056/NEJMoa0903840
[10]  Paschka, P., Schlenk, R.F., Gaidzik, V.I., Habdank, M., Kr?nke, J., Bullinger, L., Sp?th, D., Kayser, S., Zucknick, M., G?tze, K., et al. (2010) IDH1 and IDH2 Mutations Are Frequent Ge-netic Alterations in Acute Myeloid Leukemia and Confer Adverse Prognosis in Cytogenetically Normal Acute Myeloid Leukemia WithNPM1 Mutation without FLT3 Internal Tandem Duplication. Journal of Clinical Oncology, 28, 3636-3643.
https://doi.org/10.1200/JCO.2010.28.3762
[11]  Losman, J. and Kaelin, W.G. (2013) What a Difference a Hydroxyl Makes: Mutant IDH, (R)-2-Hydroxyglutarate, and Cancer. Genes & Development, 27, 836-852.
https://doi.org/10.1101/gad.217406.113
[12]  Yang, H., Ye, D., Guan, K. and Xiong, Y. (2012) IDH1 and IDH2 Mutations in Tumorigenesis: Mechanistic Insights and Clinical Perspectives. Clinical Cancer Research, 18, 5562-5571.
https://doi.org/10.1158/1078-0432.CCR-12-1773
[13]  Dang, L., White, D.W., Gross, S., Bennett, B.D., Bittinger, M.A., Driggers, E.M., Fantin, V.R., Jang, H.G., Jin, S., Keenan, M.C., et al. (2009) Cancer-Associated IDH1 Mutations Produce 2-Hydroxyglutarate. Nature, 462, 739-744.
https://doi.org/10.1038/nature08617
[14]  Ward, P.S., Patel, J., Wise, D.R., Abdel-Wahab, O., Bennett, B.D., Coller, H.A., Cross, J.R., Fantin, V.R., Hedvat, C.V., Perl, A.E., et al. (2010) The Common Feature of Leukemia-Associated IDH1 and IDH2 Mutations Is a Neomorphic Enzyme Activity Converting α-Ketoglutarate to 2-Hydroxyglutarate. Cancer Cell, 17, 225-234.
https://doi.org/10.1016/j.ccr.2010.01.020
[15]  Koivunen, P., Lee, S., Duncan, C.G., Lopez, G., Lu, G., Ramkis-soon, S., Losman, J.A., Joensuu, P., Bergmann, U., Gross, S., et al. (2012) Transformation by the (R)-Enantiomer of 2-Hydroxyglutarate Linked to EGLN Activation. Nature, 483, 484-488.
https://doi.org/10.1038/nature10898
[16]  Montalban-Bravo, G. and DiNardo, C.D. (2018) The Role of IDH Muta-tions in Acute Myeloid Leukemia. Future Oncology, 14, 979-993.
https://doi.org/10.2217/fon-2017-0523
[17]  Lu, C., Ward, P.S., Kapoor, G.S., Rohle, D., Turcan, S., Abdel-Wahab, O., Edwards, C.R., Khanin, R., Figueroa, M.E., Melnick, A., et al. (2012) IDH Mutation Impairs Histone Demethylation and Results in a Block to Cell Differentiation. Nature, 483, 474-478.
https://doi.org/10.1038/nature10860
[18]  Clark, O., Yen, K. and Mellinghoff, I.K. (2016) Molecular Pathways: Isocitrate Dehydrogenase Mutations in Cancer. Clinical Cancer Research, 22, 1837-1842.
https://doi.org/10.1158/1078-0432.CCR-13-1333
[19]  Zhan, T., Rindtorff, N. and Boutros, M. (2017) Wnt Sig-naling in Cancer. Oncogene, 36, 1461-1473.
https://doi.org/10.1038/onc.2016.304
[20]  Chen, J., Lai, Y., Tsai, H., Kuo, C., Yen, B.L., Yeh, S., Sun, H.S. and Hung, W. (2016) The Oncometabolite R-2-Hy- droxyglutarate Activates NF-κB-Dependent Tumor-Promoting Stromal Niche for Acute Myeloid Leukemia Cells. Scientific Reports, 6, Article No. 32428.
https://doi.org/10.1038/srep32428
[21]  Sasaki, M., Knobbe, C.B., Munger, J.C., Lind, E.F., Brenner, D., Brüstle, A., Harris, I.S., Holmes, R., Wakeham, A., Haight, J., et al. (2012) IDH1 (R132H) Mutation Increases Murine Haema-topoietic Progenitors and Alters Epigenetics. Nature, 488, 656-659.
https://doi.org/10.1038/nature11323
[22]  Chen, C., Liu, Y., Lu, C., Cross, J.R., Morris, J.P., Shroff, A.S., Ward, P.S., Bradner, J.E., Thompson, C. and Lowe, S.W. (2013) Cancer-Associated IDH2 Mutants Drive an Acute Myeloid Leukemia That Is Susceptible to Brd4 Inhibition. Genes & Development, 27, 1974-1985.
https://doi.org/10.1101/gad.226613.113
[23]  Kats, L.M., Reschke, M., Taulli, R., Pozdnyakova, O., Burgess, K., Bhargava, P., Straley, K., Karnik, R., Meissner, A., Small, D., et al. (2014) Proto-Oncogenic Role of Mutant IDH2 in Leukemia Initiation and Maintenance. Cell Stem Cell, 14, 329-341.
https://doi.org/10.1016/j.stem.2013.12.016
[24]  Brunner, A.M., Neuberg, D.S., Wander, S.A., Sadrzadeh, H., Ballen, K.K., Amrein, P.C., Attar, E., Hobbs, G.S., Chen, Y.B., Perry, A., et al. (2019) Isocitrate Dehydrogenase 1 and 2 Mutations, 2-Hydroxyglutarate Levels, and Response to Standard Chemotherapy for Patients with Newly Diagnosed Acute Myeloid Leukemia. American Cancer Society, 125, 541-549.
https://doi.org/10.1002/cncr.31729
[25]  Abdel-Wahab, O., Patel, J. and Levine, R.L. (2011) Clinical Implications of Novel Mutations in Epigenetic Modifiers in AML. Hematology/Oncology Clinics of North America, 25, 1119-1133.
https://doi.org/10.1016/j.hoc.2011.09.013
[26]  Issa, G.C. and DiNardo, C.D. (2021) Acute Myeloid Leukemia with IDH1 and IDH2 Mutations: 2021 Treatment Algorithm. Blood Cancer Journal, 11, Article No. 107.
https://doi.org/10.1038/s41408-021-00497-1
[27]  Chou, W., Lei, W., Ko, B., Hou, H., Chen, C., Tang, J., Yao, M., Tsay, W., Wu, S., Huang, S., et al. (2011) The Prognostic Impact and Stability of Isocitrate dehydrogenase 2 Mutation in Adult Patients with Acute Myeloid Leukemia. Leukemia, 25, 246-253.
https://doi.org/10.1038/leu.2010.267
[28]  Becker, J.S. and Fathi, A.T. (2020) Targeting IDH Mutations in AML: Wielding the Double-Edged Sword of Differentiation. Current Cancer Drug Targets, 20, 490-500.
https://doi.org/10.2174/1568009620666200424145622
[29]  Padmakumar, D., Chandraprabha, V.R., Gopinath, P., Vimala Devi, A.R.T., Anitha, G.R.J., Sreelatha, M.M., Padmakumar, A. and Sreedharan, H. (2021) A Concise Review on the Molecular Genetics of Acute Myeloid Leukemia. Leukemia Research, 111, Article ID: 106727.
https://doi.org/10.1016/j.leukres.2021.106727
[30]  Wang, F., Travins, J., DeLaBarre, B., Penard-Lacronique, V., Schalm, S., Hansen, E., Straley, K., Kernytsky, A., Liu, W., Gliser, C., et al. (2013) Targeted Inhibition of Mutant IDH2 in Leukemia Cells Induces Cellular Differentiation. Science, 340, 622-626.
https://doi.org/10.1126/science.1234769
[31]  Yen, K., Travins, J., Wang, F., David, M.D., Artin, E., Straley, K., Padyana, A., Gross, S., DeLaBarre, B., Tobin, E., et al. (2017) AG-221, a First-in-Class Therapy Targeting Acute Mye-loid Leukemia Harboring Oncogenic IDH2 Mutations. Cancer Discovery, 7, 478-493.
https://doi.org/10.1158/2159-8290.CD-16-1034
[32]  Stein, E.M., DiNardo, C.D., Pollyea, D.A., Fathi, A.T., Ro-boz, G.J., Altman, J.K., Stone, R.M., DeAngelo, D.J., Levine, R.L., Flinn, I.W., et al. (2017) Enasidenib in Mutant IDH2 Relapsed or Refractory Acute Myeloid Leukemia. Blood, 130, 722-731.
https://doi.org/10.1182/blood-2017-04-779405
[33]  Pollyea, D.A., Tallman, M.S., de Botton, S., Kantarjian, H.M., Collins, R., Stein, A.S., Frattini, M.G., Xu, Q., Tosolini, A., See, W.L., et al. (2019) Enasidenib, an Inhibitor of Mutant IDH2 Proteins, Induces Durable Remissions in Older Patients with Newly Diagnosed Acute Myeloid Leukemia. Leuke-mia, 33, 2575-2584.
https://doi.org/10.1038/s41375-019-0472-2
[34]  De Botton, S., Montesinos, P., Schuh, A.C., Papayannidis, C., Vyas, P., Wei, A.H., Ommen, H., Semochkin, S., Kim, H., Larson, R.A., et al. (2023) Enasidenib vs Conventional Care in Older Patients with Late-Stage Mutant-IDH2 Relapsed/Refractory AML: A Randomized Phase 3 Trial. Blood, 141, 156-167.
https://doi.org/10.1182/blood.2021014901
[35]  DiNardo, C.D., Stein, E.M., de Botton, S., Roboz, G.J., Altman, J.K., Mims, A.S., Swords, R., Collins, R.H., Mannis, G.N., Pollyea, D.A., et al. (2018) Durable Remissions with Ivosidenib in IDH1-Mutated Relapsed or Refractory AML. The New England Journal of Medicine, 378, 2386-2398.
https://doi.org/10.1056/NEJMoa1716984
[36]  Roboz, G.J., DiNardo, C.D., Stein, E.M., de Botton, S., Mims, A.S., Prince, G.T., Altman, J.K., Arellano, M.L., Donnellan, W., Erba, H.P., et al. (2020) Ivosidenib Induces Deep Durable Remissions in Patients with Newly Diagnosed IDH1-Mutant Acute Myeloid Leukemia. Blood, 135, 463-471.
https://doi.org/10.1182/blood.2019002140
[37]  De Botton, S., Fenaux, P., Yee, K.W.L., Récher, C., Wei, A.H., Montesinos, P., Taussig, D.C., Pigneux, A., Braun, T., Curti, A., et al. (2023) Olutasidenib (FT-2102) Induces Durable Complete Remissions in Patients with Relapsed or refractory IDH1-Mutated AML. Blood Advances.
https://doi.org/10.1182/bloodadvances.2022009411
[38]  DiNardo, C.D., Hochhaus, A., Frattini, M.G., Yee, K., Zander, T., Kr?mer, A., Chen, X., Ji, Y., Parikh, N.S., Choi, J. and Wei, A.H. (2022) A Phase 1 Study of IDH305 in Pa-tients with IDH1R132-Mutant Acute Myeloid Leukemia or Myelodysplastic Syndrome. Journal of Cancer Research and Clinical Oncology, 149, 1145-1158.
https://doi.org/10.1007/s00432-022-03983-6
[39]  Chaturvedi, A., Herbst, L., Pusch, S., Klett, L., Goparaju, R., Stichel, D., Kaulfuss, S., Panknin, O., Zimmermann, K., Toschi, L., et al. (2017) Pan-Mutant-IDH1 Inhibitor BAY1436032 Is Highly Effective against Human IDH1 Mutant Acute Myeloid Leukemia in Vivo. Leukemia, 31, 2020-2028.
https://doi.org/10.1038/leu.2017.46
[40]  Heuser, M., Palmisiano, N., Mantzaris, I., Mims, A., DiNardo, C., Silverman, L.R., Wang, E.S., Fiedler, W., Baldus, C., Schwind, S., et al. (2020) Safety and Efficacy of BAY1436032 in IDH1-Mutant AML: Phase I Study Results. Leukemia, 34, 2903-2913.
https://doi.org/10.1038/s41375-020-0996-5
[41]  Chaturvedi, A., Gupta, C., Gabdoulline, R., Borchert, N.M., Go-paraju, R., Kaulfuss, S., G?rlich, K., Schottmann, R., Othman, B., Welzenbach, J., et al. (2021) Synergistic Activity of IDH1 Inhibitor BAY1436032 with Azacitidine in IDH1 Mutant Acute Myeloid Leukemia. Haematologica, 106, 565-573.
https://doi.org/10.3324/haematol.2019.236992
[42]  Intlekofer, A.M., Shih, A.H., Wang, B., Nazir, A., Rustenburg, A.S., Albanese, S.K., Patel, M., Famulare, C., Correa, F.M., Takemoto, N., et al. (2018) Acquired Resistance to IDH In-hibition through Trans or Cis Dimer-Interface Mutations. Nature, 559, 125-129.
https://doi.org/10.1038/s41586-018-0251-7
[43]  Choe, S., Wang, H., DiNardo, C.D., Stein, E.M., de Botton, S., Roboz, G.J., Altman, J.K., Mims, A.S., Watts, J.M., Pollyea. D.A., et al. (2020) Molecular Mechanisms Mediating Re-lapse following Ivosidenib Monotherapy in IDH1-Mutant Relapsed or Refractory AML. Blood Advances, 4, 1894-1905.
https://doi.org/10.1182/bloodadvances.2020001503
[44]  Quek, L., David, M.D., Kennedy, A., Metzner, M., Ama-tangelo, M., Shih, A., Stoilova, B., Quivoron, C., Heiblig, M., Willekens, C., et al. (2018) Clonal Heterogeneity of Acute Myeloid Leukemia Treated with the IDH2 Inhibitor Enasidenib. Nature Medicine, 24, 1167-1177.
https://doi.org/10.1038/s41591-018-0115-6
[45]  Harding, J.J., Lowery, M.A., Shih, A.H., Schvartzman, J.M., Hou, S., Famulare, C., Patel, M., Roshal, M., Do, R.K., Zehir, A., et al. (2018) Isoform Switching as a Mechanism of Acquired Resistance to Mutant Isocitrate Dehydrogenase Inhibition. Cancer Discovery, 8, 1540-1547.
https://doi.org/10.1158/2159-8290.CD-18-0877
[46]  Wang, F., Morita, K., DiNardo, C.D., Furudate, K., Tanaka, T., Yan, Y., Patel, K.P., MacBeth, K.J., Wu, B., Liu, G., et al. (2021) Leukemia Stemness and Co-Occurring Mutations Drive Resistance to IDH Inhibitors in Acute Myeloid Leukemia. Nature Communications, 12, Article No. 260.
https://doi.org/10.1038/s41467-021-22874-x
[47]  MacBeth, K.J., Chopra, V.S., Tang, L., Zheng, B., Avanzino, B., See, W.L., Schwickart, M., Figueroa, M.E., Quek, L. and DiMartino, J.F. (2021) Combination of Azacitidine and Enasidenib Enhances Leukemic Cell Differentiation and Cooperatively Hypomethylates DNA. Experimental Hematology, 98, 47-52.
https://doi.org/10.1016/j.exphem.2021.03.003
[48]  DiNardo, C.D., Stein, A.S., Stein, E.M., Fathi, A.T., Frankfurt, O., Schuh, A.C., D?hner, H., Martinelli, G., Patel, P.A., Raffoux, E., et al. (2021) Mutant Isocitrate Dehydrogenase 1 Inhibitor Ivosidenib in Combination with Azacitidine for Newly Diagnosed Acute Myeloid Leukemia. Journal of Clinical Oncology, 39, 57-65.
https://doi.org/10.1200/JCO.20.01632
[49]  Montesinos, P., Recher, C., et al. (2022) Ivosidenib and Azacitidine inIDH1-Mutated AML. The New England Journal of Medicine, 386, 2535-2537.
https://doi.org/10.1056/NEJMc2206489
[50]  DiNardo, C.D., Schuh, A.C., Stein, E.M., Montesinos, P., Wei, A.H., de Botton, S., Zeidan, A.M., Fathi, A.T., Kantarjian, H.M., Bennett, J.M., et al. (2021) Enasidenib plus Azacitidine ver-sus Azacitidine Alone in Patients with Newly Diagnosed, Mutant-IDH2 Acute Myeloid Leukaemia (AG221-AML-005): A Single-Arm, Phase 1b and Randomised, Phase 2 Trial. The Lancet Oncology, 22, 1597-1608.
https://doi.org/10.1016/S1470-2045(21)00494-0
[51]  (2022) Ivosidenib Boosts OS with Azacitidine in AML. Cancer Discovery, 12, 1602-1603.
https://doi.org/10.1158/2159-8290.CD-NB2022-0035
[52]  Venugopal, S., Takahashi, K., Daver, N., Maiti, A., Borthakur, G., Loghavi, S., Short, N.J., Ohanian, M., Masarova, L., Issa, G., et al. (2022) Efficacy and Safety of Enasidenib and Azacitidine Combination in Patients with IDH2 Mutated Acute Myeloid Leukemia and Not Eligible for Intensive Chemotherapy. Blood Cancer Journal, 12, Article No. 10.
https://doi.org/10.1038/s41408-021-00604-2
[53]  Wei, A.H., D?hner, H., Pocock, C., Montesinos, P., Afanasyev, B., Dombret, H., Ravandi, F., Sayar, H., Jang, J., Porkka, K., et al. (2020) Oral Azacitidine Maintenance Therapy for Acute Myeloid Leukemia in First Remission. The New England Journal of Medicine, 383, 2526-2537.
https://doi.org/10.1056/NEJMoa2004444

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133