All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

Investigation of Electronic, Elastic and Dynamic Properties of AgNbO3 and AgTaO3 under Pressure: Ab Initio Calculation

DOI: 10.4236/wjcmp.2023.132004, PP. 57-77

Keywords: Electronic Structure, Elastic Constants, Born Effective Charges, Dynamic Properties, AgNbO3, AgTaO3

Full-Text   Cite this paper   Add to My Lib

Abstract:

Based on the density functional theory within the local density approximation (LDA), we studied the electronic, elastic, and dynamic properties of AgNbO3 and AgTaO3 compounds under pressure. The elastic constants, optic and static dielectric constants, born effective charges, and dynamic properties of AgNbO3 and AgTaO3 in cubic phase were studied as pressure dependences with the ab initio method. For these compounds, we have also calculated the bulk modulus, Young’s modulus, shear modulus, Vickers hardness, Poisson’s ratio, anisotropy factor, sound velocities, and Debye temperature from the obtained elastic constants. In addition, the brittleness and ductility properties of these compounds were estimated from Poisson’s ratio and Pugh’s rule (G/B). Our calculated values also show that AgNbO3 (0.37) and AgTaO3 (0.39) behave as ductile materials and steer away from brittleness by increasing pressure. The calculated values of Vicker hardness for both compounds indicate that they are soft materials. The results show that band gaps, elastic constants, elastic modules, and dynamic properties for both compounds are sensitive to pressure changes. We have also made some comparisons with related experimental and theoretical data that is available in the literature.

References

[1]  Kania, A., Roleder, K., Kugel, G.E. and Fontana, M.D. (1986) Raman-Scattering, Central Peak and Phase-Transitions in AgNbO3. Journal of Physics C—Solid State Physics, 19, 9-20.
https://doi.org/10.1088/0022-3719/19/1/007
[2]  Sciau, P., Kania, A., Dkhil, B., Suard, E. and Ratuszna, A. (2004) Structural Investigation of AgNbO3 Phases Using X-Ray and Neutron Diffraction. Journal of Physics—Condensed Matter, 16, 2795-2810.
https://doi.org/10.1088/0953-8984/16/16/004
[3]  Kania, A. (1998) An Additional Phase Transition in Silver Niobate AgNbO3. Ferroelectrics, 205, 19-28.
https://doi.org/10.1080/00150199808228384
[4]  Yashima, M., Matsuyama, S., Sano, R., Itoh, M., Tsuda, K. and Fu, D.S. (2011) Structure of Ferroelectric Silver Niobate AgNbO3. Chemistry of Materials, 23, 1643-1645.
https://doi.org/10.1021/cm103389q
[5]  Kato, H., Kobayashi, H. and Kudo, A. (2002) Role of Ag+ in the Band Structures and Photocatalytic Properties of AgMO3 (M: Ta and Nb) with the Perovskite Structure. Journal of Physical Chemistry B, 106, 12441-12447.
https://doi.org/10.1021/jp025974n
[6]  Arney, D., Hardy, C., Greve, B. and Maggard, P.A. (2010) Flux Synthesis of AgNbO3: Effect of Particle Surfaces and Sizes on Photocatalytic Activity. Journal of Photochemistry and Photobiology A—Chemistry, 214, 54-60.
https://doi.org/10.1016/j.jphotochem.2010.06.006
[7]  Schulze, G. (1963) F. Jona and G. Shirane, Ferroelectric Crystals. 402 S. Oxford/ London/New York/Paris 1962. Pergamon Press. Preis geb. 84 s. net. ZAMM— Journal of Applied Mathematics and Mechanics, 43, 512.
https://doi.org/10.1002/zamm.19630431016
[8]  Kugel, G.E., Fontana, M.D., Hafid, M., Roleder, K., Kania, A. and Pawelczyk, M. (1987) A Raman-Study of Silver Tantalate (AgTaO3) and Its Structural Phase-Transition Sequence. Journal of Physics C—Solid State Physics, 20, 1217-1230.
https://doi.org/10.1088/0022-3719/20/9/012
[9]  Suchanicz, J. and Kania, A. (2009) Uniaxial Pressure Effect on Dielectric Properties of AgTaO3 Single Crystals. Ferroelectrics, 393, 21-26.
https://doi.org/10.1080/00150190903412614
[10]  Valant, M., Axelsson, A.K., Zou, B. and Alford, N. (2007) Strain Influence on Crystallography of AgNbO3-Based Thin Films. Journal of Optoelectronics and Advanced Materials, 9, 1377-1381.
[11]  Cohen, R.E. and Krakauer, H. (1990) Lattice-Dynamics and Origin of Ferroelectricity in Batio3—Linearized-Augmented-Plane-Wave Total-Energy Calculations. Physical Review B, 42, 6416-6423.
https://doi.org/10.1103/PhysRevB.42.6416
[12]  Gonze, X., Beuken, J.M., Caracas, R., Detraux, F., Fuchs, M., et al. (2002) First-Principles Computation of Material Properties: The ABINIT Software Project. Computational Materials Science, 25, 478-492.
https://doi.org/10.1016/S0927-0256(02)00325-7
[13]  Fuchs, M. and Scheffler, M. (1999) Ab Initio Pseudopotentials for Electronic Structure Calculations of Poly-Atomic Systems Using Density-Functional Theory. Computer Physics Communications, 119, 67-98.
https://doi.org/10.1016/S0010-4655(98)00201-X
[14]  Troullier, N. and Martins, J.L. (1991) Efficient Pseudopotentials for Plane-Wave Calculations. Physical Review B, 43, 1993-2006.
https://doi.org/10.1103/PhysRevB.43.1993
[15]  Perdew, J.P. and Wang, Y. (2018) Erratum: Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy [Phys. Rev. B 45, 13244 (1992)]. Physical Review B, 98, Article ID: 079904.
https://doi.org/10.1103/PhysRevB.98.079904
[16]  Ceperley, D.M. and Alder, B.J. (1980) Ground-State of the Electron-Gas by a Stochastic Method. Physical Review Letters, 45, 566-569.
https://doi.org/10.1103/PhysRevLett.45.566
[17]  Monkhorst, H.J. and Pack, J.D. (1976) Special Points for Brillonin-Zone Integrations. Physical Review B, 13, 5188-5192.
https://doi.org/10.1103/PhysRevB.13.5188
[18]  Cabuk, S. and Simsek, S. (2008) First-Principles Studies of the Electronic Structure and Optical Properties of AgBO3 (B = Nb, Ta) in the Paraelectric Phase. Central European Journal of Physics, 6, 730-736.
https://doi.org/10.2478/s11534-008-0046-9
[19]  Erdinc, B. and Kaval, M. (2017) DFT Study of Electronic and Optical Properties of Paraelectric AgNbO3 Crystal under 0-50 GPa Pressure. Indian Journal of Physics, 91, 653-657.
https://doi.org/10.1007/s12648-017-0961-y
[20]  Shigemi, A. and Wada, T. (2008) Crystallographic Phase Stabilities and Electronic Structures in AgNbO3 by First-Principles Calculation. Molecular Simulation, 34, 1105-1114.
https://doi.org/10.1080/08927020802235698
[21]  Prasad, K.G., Niranjan, M.K. and Asthma, S. (2016) The Structural and Electronic Properties of Cubic AgMO3 (M = Nb, Ta) by First Principles Calculations. AIP Conference Proceedings, 1728, Article ID: 020102.
https://doi.org/10.1063/1.4946153
[22]  Mahmood, A., Ramay, S.M., Rafique, H.M., Al-Zaghayer, Y. and Khan, S.U.D. (2014) First-Principles Study of Electronic, Optical and Thermoelectric Properties in Cubic Perovskite Materials AgMO3 (M = V, Nb, Ta). Modern Physics Letters B, 28, Article ID: 1450077.
https://doi.org/10.1142/S0217984914500778
[23]  Erdinc, B. and Dede, M. (2016) First-Principles Study of Electronic and Optical Properties of Cubic AgTaO3 Structure in Paraelectric Phase at Different Pressures. Ferroelectrics, 504, 130-138.
https://doi.org/10.1080/00150193.2016.1240005
[24]  Martin, R.M. (2020) Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press, Cambridge.
https://doi.org/10.1017/9781108555586
[25]  Gonze, X. (1995) Perturbation Expansion of Variational-Principles at Arbitrary Order. Physical Review A, 52, 1086-1095.
https://doi.org/10.1103/PhysRevA.52.1086
[26]  Baroni, S., de Gironcoli, S., Dal Corso, A. and Giannozzi, P. (2001) Phonons and Related Crystal Properties from Density-Functional Perturbation Theory. Reviews of Modern Physics, 73, 515-562.
https://doi.org/10.1103/RevModPhys.73.515
[27]  Hamann, D.R., Wu, X., Rabe, K.M. and Vanderbilt, D. (2005) Metric Tensor Formulation of Strain in Density-Functional Perturbation Theory. Physical Review B, 72, Article ID: 035117.
[28]  Wu, Z.J., Zhao, E.J., Xiang, H.P., Hao, X.F., Liu, X.J. and Meng, J. (2007) Crystal Structures and Elastic Properties of Superhard IrN2 and IrN3 from First Principles. Physical Review B, 76, Article ID: 054115.
[29]  Koc, H., Deligoz, E. and Mamedov, A.M. (2011) The Elastic, Electronic, and Optical Properties of PtSi and PtGe Compounds. Philosophical Magazine, 91, 3093-3107.
https://doi.org/10.1080/14786435.2011.566229
[30]  Kong, B., Zhu, B., Cheng, Y., Zhang, L., Zeng, Q.X. and Sun, X.W. (2011) Structural, Mechanical, Thermodynamics Properties and Phase Transition of FeVSb. Physica B—Condensed Matter, 406, 3003-3010.
https://doi.org/10.1016/j.physb.2011.04.067
[31]  Voigt, W. (1910) Lehrbuch der kristallphysik: (Mit ausschluss der kristalloptik). BG Teubner, Berlin.
[32]  Reuss, A. (1929) Calculation of the Flow Limits of Mixed Crystals on the Basis of the Plasticity of Monocrystals. Zeitschrift fur Angewandte Mathematik und Mechanik, 9, 49-58.
https://doi.org/10.1002/zamm.19290090104
[33]  Hill, R. (1952) The Elastic Behaviour of a Crystalline Aggregate. Proceedings of the Physical Society. Section A, 65, 349-354.
https://doi.org/10.1088/0370-1298/65/5/307
[34]  Anderson, O.L. (1963) A Simplified Method for Calculating the Debye Temperature from Elastic Constants. Journal of Physics and Chemistry of Solids, 24, 909-917.
https://doi.org/10.1016/0022-3697(63)90067-2
[35]  Gaillac, R., Pullumbi, P. and Coudert, F.X. (2016) ELATE: An Open-Source Online Application for Analysis and Visualization of Elastic Tensors. Journal of Physics-Condensed Matter, 28, Article ID: 275201.
https://doi.org/10.1088/0953-8984/28/27/275201
[36]  Tian, Y.J., Xu, B. and Zhao, Z.S. (2012) Microscopic Theory of Hardness and Design of Novel Superhard Crystals. International Journal of Refractory Metals & Hard Materials, 33, 93-106.
https://doi.org/10.1016/j.ijrmhm.2012.02.021
[37]  Liu, W.N., Niu, Y.T. and Li, W.Q. (2020) Theoretical Prediction of the Physical Characteristic of Na3MO4 (M = Np and Pu): The First-Principles Calculations. Ceramics International, 46, 25359-25365.
https://doi.org/10.1016/j.ceramint.2020.07.003
[38]  Haines, J., Leger, J.M. and Bocquillon, G. (2001) Synthesis and Design of Superhard Materials. Annual Review of Materials Research, 31, 1-23.
https://doi.org/10.1146/annurev.matsci.31.1.1
[39]  Sirdeshmukh, D.B., Sirdeshmukh, L. and Subhadra, K.G. (2011) Atomistic Properties of Solids. Vol. 147, Springer, Berlin, 1-617.
https://doi.org/10.1007/978-3-642-19971-4_1
[40]  Bannikov, V.V., Shein, I.R. and Ivanovskii, A.L. (2007) Electronic Structure, Chemical Bonding and Elastic Properties of the First Thorium-Containing Nitride Perovskite TaThN3. Physica Status Solidi—Rapid Research Letters, 1, 89-91.
https://doi.org/10.1002/pssr.200600116
[41]  Pugh, S. (1954) XCII. Relations between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45, 823-843.
https://doi.org/10.1080/14786440808520496
[42]  Duan, J., Zhou, T., Zhang, L., Du, J.-G., Jiang, G. and Wang, H.-B. (2015) Elastic Properties and Electronic Structures of Lanthanide Hexaborides. Chinese Physics B, 24, Article ID: 096201.
https://doi.org/10.1088/1674-1056/24/9/096201
[43]  Ranganathan, S.I. and Ostoja-Starzewski, M. (2008) Universal Elastic Anisotropy Index. Physical Review Letters, 101, Article ID: 055504.
https://doi.org/10.1103/PhysRevLett.101.055504
[44]  Ghosez, P. (1997) First-Principles Study of the Dielectric and Dynamical Properties of Barium Titanate. Doctor Thesis, Universite Catholique de Louvain, Louvain.
[45]  Harrison, W.A. (2012) Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond. Courier Corporation, Chelmsford.
[46]  Granado, E., Moreno, N.O., Garcia, A., Sanjurjo, J.A., Rettori, C., et al. (1998) Phonon Raman Scattering in R(1-x)A(x)MnO(3+delta) (R = La, Pr; A = Ca, Sr). Physical Review B, 58, 11435-11440.
https://doi.org/10.1103/PhysRevB.58.11435

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413