全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

创伤性颅脑损伤引起低钙血症的机制
Mechanism of Hypocalcemia Caused by Traumatic Brain Injury

DOI: 10.12677/ACM.2023.1351197, PP. 8553-8557

Keywords: 创伤性颅脑损伤,低钙血症
Traumatic Brain Injury
, Hypocalcemia

Full-Text   Cite this paper   Add to My Lib

Abstract:

创伤性颅脑损伤(traumatic brain injury, TBI)是发达及发展中国家年轻人死亡的主要原因。TBI是一种十分常见的神经外科疾病,它是由多种原因所造成的,其中常见的原因包括高处跌落、交通事故、斗殴伤以及运动伤。TBI对于颅脑的损伤主要分为直接暴力后引起的脑组织原发性损害,如:局灶性大脑挫裂伤和弥漫性轴索损伤;另一种则是由原发性颅脑损伤后引起的血脑屏障破坏、外周血细胞浸润、脑水肿以及多种血电解质紊乱(K+、Ca2+、Na+、Mg2+、Cl),这些继发性损害会引起大脑神经元在创伤后数小时破坏凋亡,从而影响预后生存质量。其中低钙血症可作为创伤性颅脑损伤的独立危险因素,现将创伤性颅脑损伤后引起低钙血症相关机制作一综述。
Traumatic brain injury (TBI) is the main cause of death among young people in developed and de-veloping countries. TBI is a very common neurosurgical disease, which is caused by a variety of reasons, including high altitude falls, traffic accidents, combat injuries, and sports injuries. The brain injury caused by TBI is mainly divided into primary brain damage caused by direct violence, such as focal brain contusion and diffuse peripheral injury. The other is the destruction of the blood brain barrier, infiltration of peripheral blood cells, brain edema, and various blood electrolyte dis-turbances (K+、Ca2+、Na+、Mg2+、Cl) caused by primary brain injury. These secondary damages can cause brain neurons to destroy and apoptosis within a few hours after trauma, thereby affecting the prognosis and quality of life. Among them, hypocalcemia can be an independent risk factor for traumatic brain injury. This article reviews the mechanisms related to hypocalcemia after traumat-ic brain injury.

References

[1]  Brooks, J.C., Strauss, D.J., Shavelle, R.M., Paculdo, D.R., Hammond, F.M. and Harrison-Felix, C.L. (2013) Long-Term Disability and Survival in Traumatic Brain Injury: Results from the National Institute on Disability and Rehabilitation Research Model Systems. Archives of Physical Medicine and Rehabilitation, 94, 2203-2209.
https://doi.org/10.1016/j.apmr.2013.07.005
[2]  李小勇, 王忠诚. 创伤性颅脑损伤治疗新进展[J]. 中华神经外科杂志, 1999(1): 58-60.
[3]  Zhang, L., Wang, H., Zhou, X., Mao, L., Ding, K. and Hu, Z. (2019) Role of Mitochon-drial Calcium Uniporter-Mediated Ca2+ and Iron Accumulation in Traumatic Brain Injury. Journal of Cellular and Mo-lecular Medicine, 23, 2995-3009.
https://doi.org/10.1111/jcmm.14206
[4]  Galgano, M., Toshkezi, G., Qiu, X., Russell, T., Chin, L. and Zhao, L.R. (2017) Traumatic Brain Injury: Current Treatment Strategies and Future Endeavors. Cell Transplantation, 26, 1118-1130.
https://doi.org/10.1177/0963689717714102
[5]  Weber, J.T. (2012) Altered Calcium Signaling Following Trau-matic Brain Injury. Frontiers in Pharmacology, 3, Article No. 60.
https://doi.org/10.3389/fphar.2012.00060
[6]  Thapa, K., Khan, H., Singh, T.G. and Kaur, A. (2021) Traumatic Brain Injury: Mechanistic Insight on Pathophysiology and Potential Therapeutic Targets. Journal of Molecular Neuro-science, 71, 1725-1742.
https://doi.org/10.1007/s12031-021-01841-7
[7]  Choi, D.W. (1987) Ionic Dependence of Glutamate Neurotoxici-ty. Journal of Neuroscience, 7, 369-379.
https://doi.org/10.1523/JNEUROSCI.07-02-00369.1987
[8]  Faden, A.I., Demediuk, P., Panter, S.S. and Vink, R. (1989) The Role of Excitatory Amino Acids and NMDA Receptors in Traumatic Brain Injury. Science, 244, 798-800.
https://doi.org/10.1126/science.2567056
[9]  Pike, B.R., Zhao, X., Newcomb, J.K., Glenn, C.C. anderson, D.K. and Hayes, R.L. (2000) Stretch Injury Causes Calpain and Caspase-3 Activation and Necrotic and Apoptotic Cell Death in Septo-Hippocampal Cell Cultures. Journal of Neurotrauma, 17, 283-298.
https://doi.org/10.1089/neu.2000.17.283
[10]  Griffith, O.W. and Stuehr, D.J. (1995) Nitric Oxide Synthases: Properties and Catalytic Mechanism. Annual Review of Physiology, 57, 707-736.
https://doi.org/10.1146/annurev.ph.57.030195.003423
[11]  Cherian, L., Hlatky, R. and Robertson, C.S. (2004) Ni-tric Oxide in Traumatic Brain Injury. Brain Pathology, 14, 195-201.
https://doi.org/10.1111/j.1750-3639.2004.tb00053.x
[12]  Hall, E.D., Detloff, M.R., Johnson, K. and Kupina, N.C. (2004) Peroxynitrite-Mediated Protein Nitration and Lipid Peroxidation in a Mouse Model of Traumatic Brain Injury. Journal of Neurotrauma, 21, 9-20.
https://doi.org/10.1089/089771504772695904
[13]  Nicholls, D.G. (1985) A Role for the Mitochondrion in the Protection of Cells Against Calcium Overload? Progress in Brain Research, 63, 97-106.
https://doi.org/10.1016/S0079-6123(08)61978-0
[14]  Susin, S.A., Zamzami, N. and Kroemer, G. (1998) Mito-chondria as Regulators of Apoptosis: Doubt No More. Biochimica et Biophysica Acta, 1366, 151-165.
https://doi.org/10.1016/S0005-2728(98)00110-8
[15]  Naga, K.K., Sullivan, P.G. and Geddes, J.W. (2007) High Cyclophilin D Content of Synaptic Mitochondria Results in Increased Vulnerability to Permeability Transition. Journal of Neuroscience, 27, 7469-7475.
https://doi.org/10.1523/JNEUROSCI.0646-07.2007
[16]  Bernardi, P. (1992) Modulation of the Mitochondrial Cy-closporin A-Sensitive Permeability Transition Pore by the Proton Electrochemical Gradient. Evidence that the Pore Can Be Opened by Membrane Depolarization. Journal of Biological Chemistry, 267, 8834-8839.
https://doi.org/10.1016/S0021-9258(19)50355-6
[17]  Scorrano, L., Petronilli, V. and Bernardi, P. (1997) On the Voltage Dependence of the Mitochondrial Permeability Transition Pore. A Critical Appraisal. Journal of Biological Chemistry, 272, 12295-12299.
https://doi.org/10.1074/jbc.272.19.12295
[18]  Kristal, B.S. and Dubinsky, J.M. (1997) Mitochondrial Permeability Transition in the Central Nervous System: Induction by Calcium Cycling-Dependent and -Independent Pathways. Jour-nal of Neurochemistry, 69, 524-538.
https://doi.org/10.1046/j.1471-4159.1997.69020524.x
[19]  Lifshitz, J., Friberg, H., Neumar, R.W., Raghupathi, R., Welsh, F.A., Janmey, P., Saatman, K.E., Wieloch, T., Grady, M.S. and McIntosh, T.K. (2003) Structural and Functional Damage Sustained by Mitochondria after Traumatic Brain Injury in the Rat: Evidence for Differentially Sensitive Popula-tions in the Cortex and Hippocampus. Journal of Cerebral Blood Flow & Metabolism, 23, 219-231.
https://doi.org/10.1097/01.WCB.0000040581.43808.03
[20]  Singh, I.N., Sullivan, P.G., Deng, Y., Mbye, L.H. and Hall, E.D. (2006) Time Course of Post-Traumatic Mitochondrial Oxidative Damage and Dysfunction in a Mouse Model of Focal Traumatic Brain Injury: Implications for Neuroprotective Therapy. Journal of Cerebral Blood Flow & Metabolism, 26, 1407-1418.
https://doi.org/10.1038/sj.jcbfm.9600297
[21]  Huang, Y. and Wang, K.K. (2001) The Calpain Family and Human Disease. Trends in Molecular Medicine, 7, 355-362.
https://doi.org/10.1016/S1471-4914(01)02049-4
[22]  Kruman, I.I. and Mattson, M.P. (1999) Pivotal Role of Mi-tochondrial Calcium Uptake in Neural Cell Apoptosis and Necrosis. Journal of Neurochemistry, 72, 529-540.
https://doi.org/10.1046/j.1471-4159.1999.0720529.x
[23]  Ankarcrona, M., Dypbukt, J.M., Bonfoco, E., Zhivotovsky, B., Orrenius, S., Lipton, S.A. and Nicotera, P. (1995) Glutamate-Induced Neuronal Death: A Succession of Necrosis or Apoptosis Depending on Mitochondrial Function. Neuron, 15, 961-973.
https://doi.org/10.1016/0896-6273(95)90186-8
[24]  Zipfel, G.J., Babcock, D.J., Lee, J.M. and Choi, D.W. (2000) Neuronal Apoptosis after CNS Injury: The Roles of Glutamate and Calcium. Journal of Neurotrauma, 17, 857-869.
https://doi.org/10.1089/neu.2000.17.857
[25]  Kostron, H., Twerdy, K., Stampfl, G., Mohsenipour, I., Fischer, J. and Grunert, V. (1984) Treatment of the Traumatic Cerebral Vasospasm with the Calcium Channel Blocker Nimodipine: A Preliminary Report. Neurological Research, 6, 29-32.
https://doi.org/10.1080/01616412.1984.11739660
[26]  Langham, J., Goldfrad, C., Teasdale, G., Shaw, D. and Rowan, K. (2003) Calcium Channel Blockers for Acute Traumatic Brain Injury. Cochrane Database of Systematic Re-views, No. 4, CD000565.
https://doi.org/10.1002/14651858.CD000565
[27]  Xiong, Y., Mahmood, A. and Chopp, M. (2009) Emerging Treatments for Traumatic Brain Injury. Expert Opinion on Emerging Drugs, 14, 67-84.
https://doi.org/10.1517/14728210902769601

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133