|
Applied Physics 2023
关于二维材料带隙调控方法的综述
|
Abstract:
自从石墨烯从石墨中成功剥离出来,二维材料的相关研究达到了高潮。因为二维材料的优异性能,它在各个领域都有很多潜在的应用。但是有些二维材料在应用中无法达到所需要的带隙范围,比如:石墨烯的零带隙限制了它在光电子器件方面的应用。为了更好地实现二维材料的应用,研究人员找到了很多方法,对二维材料的带隙进行调控,比如:施加应力、电场、原子掺杂、构建异质结构等。本文综述了对二维材料的带隙调控的几种方法,着重分析了他们的调控机理以及相关的研究,并对二维材料的带隙调控方法的应用进行总结性展望。
Since graphene was successfully stripped from graphite, research on two-dimensional materials has reached a climax. Due to the excellent performance of two-dimensional materials, they have many potential applications in various fields. However, some two-dimensional materials cannot achieve the required bandgap range in applications, such as the zero bandgaps of graphene, which limits its application in optoelectronic devices. In order to better achieve the application of two- dimensional materials, researchers have found many methods to regulate the bandgap of two-dimensional materials, such as applying stress, electric field, atomic doping, and constructing heterostructures. This article reviews several methods for regulating the bandgap of two-dimensional materials. Focused on analyzing their regulatory mechanisms and related research, it provides a summary and prospect for the application of bandgap regulation in binary materials.
[1] | Novoselov, K.S., Geim, A.K., et al. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666- 669. https://doi.org/10.1126/science.1102896 |
[2] | Xu, M., Liang, T., Shi, M. and Chen, H. (2013) Gra-phene-Like Two-Dimensional Materials. Chemical Reviews, 113, 3766- 3798. https://doi.org/10.1021/cr300263a |
[3] | Vogt, P., et al. (2012) Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon. Physical Review Letters, 108, Article ID: 155501. https://doi.org/10.1103/PhysRevLett.108.155501 |
[4] | Tan, C. and Zhang, H. (2015) Two-Dimensional Tran-sition Metal Dichalcogenide Nanosheet-Based Composites. Chemical Society Reviews, 44, 2713-2731. https://doi.org/10.1039/C4CS00182F |
[5] | Chhowalla, M., et al. (2013) The Chemistry of Two-Dimensional Layered Transition Metal Dichalcogenide Nanosheets. Nature Chemistry, 5, 263-275. https://doi.org/10.1038/nchem.1589 |
[6] | Balendhran, S., Walia, S., Nili, H., Sriram, S. and Bhaskaran, M. (2015) Elemental Analogues of Graphene: Silicene, Germanene, Stanene, and Phosphorene. Small, 11, 640-652. https://doi.org/10.1002/smll.201402041 |
[7] | Tan, C., et al. (2017) Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews, 117, 6225- 6331. https://doi.org/10.1021/acs.chemrev.6b00558 |
[8] | Lin, Y., Williams, T.V. and Connell, J.W. (2010) Soluble, Exfoliated Hexagonal Boron Nitride Nanosheets. The Journal of Physical Chemistry Letters, 1, 277-283. https://doi.org/10.1021/jz9002108 |
[9] | Gupta, S.K., He, H., Banyai, D., et al. (2014) Effect of Si Doping on the Electronic Properties of BN Monolayer. Nanoscale, 6, 5526-5531. https://doi.org/10.1039/C4NR00159A |
[10] | Yamashita, H., Fukui, K., Misawa, S. and Yoshida, S. (1979) Op-tical Properties of AlN Epitaxial Thin Films in the Vacuum Ultraviolet Region. Journal of Applied Physics, 50, 896-898. https://doi.org/10.1063/1.326007 |
[11] | Brunner, D., Angerer, H., Bustarret, E., et al. (1997) Optical Constants of Epitaxial AlGaN Films and Their Temperature Dependence. Journal of Applied Physics, 82, 5090-5096. https://doi.org/10.1063/1.366309 |
[12] | Gallinat, C.S., Koblmüller, G., Brown, J.S., et al. (2006) In-Polar InN Grown by Plasma-Assisted Molecular Beam Epitaxy. Applied Physics Letters, 89, Article ID: 032109. https://doi.org/10.1063/1.2234274 |
[13] | Ho, J.C., Specht, P., Yang, Q., et al. (2005) Effects of Stoichiometry on Electrical, Optical, and Structural Properties of Indium Nitride. Journal of Applied Physics, 98, Article ID: 093712. https://doi.org/10.1063/1.2130514 |
[14] | Peng, Z., Chen, X., Fan, Y., Srolovitz, D.J. and Lei, D. (2020) Strain Engineering of 2D Semiconductors and Graphene: from Strain Fields to Band-Structure Tuning and Photonic Ap-plications. Light: Science & Applications, 9, Article No. 190. https://doi.org/10.1038/s41377-020-00421-5 |
[15] | Drummond, N.D., Zólyomi, V. and Fal’Ko, V.I. (2012) Electrically Tunable Band Gap in Silicene. Physical Review B, 85, Article ID: 075423. https://doi.org/10.1103/PhysRevB.85.075423 |
[16] | Fu, L., Wang, X. and Mi, W. (2021) Tunable Electronic Structure and Magnetic Anisotropy of Two Dimensional Mn2CFCl/MoSSe van der Waals Heterostructures by Electric Field and Biaxial Strain. Applied Surface Science, 566, Article ID: 150683. https://doi.org/10.1016/j.apsusc.2021.150683 |
[17] | Wang, X., Meng, L., Li, B. and Gong, Y. (2021) Heteroa-toms/Molecules to Tune the Properties of 2D Materials. Materials Today, 47, 108-130. https://doi.org/10.1016/j.mattod.2020.12.019 |
[18] | Novoselov, K.S., Mishchenko, A., Carvalho, A. and Castro Neto, A.H. (2016) 2D Materials and van der Waals Heterostructures. Science, 353, Article ID: Aac9439. https://doi.org/10.1126/science.aac9439 |
[19] | Behera, H. and Mukhopadhyay, G. (2019) Effect of Strain on the Structural and Electronic Properties of Graphene- Like GaN: A DFT Study. International Journal of Modern Physics B, 33, Article ID: 1950281.
https://doi.org/10.1142/S0217979219502813 |
[20] | Wang, J., Khazaei, M., Arai, M., et al. (2017) Semimetallic Two-Dimensional TiB12: Improved Stability and Electronic Properties Tunable by Biaxial Strain. Chemistry of Ma-terials, 29, 5922-5930.
https://doi.org/10.1021/acs.chemmater.7b01433 |
[21] | 郝帅帅. 应力对宽带隙二维半导体材料性质的调控[D]: [硕士学位论文]. 徐州: 中国矿业大学, 2018. |
[22] | 杨聪霞. 应力和掺杂对单层WSe2电子结构和磁性的影响[D]: [硕士学位论文]. 新乡: 河南师范大学, 2018. |
[23] | 陈卉, 帮少, 周少雄, 李京波. 应力调控TiS3单层材料电子性质的第一性原理研究[J]. 功能材料, 2018, 49(10): 10065-10070. |
[24] | Choi, S.-M., Jhi, S.-H. and Son, Y.-W. (2010) Controlling Energy Gap of Bilayer Graphene by Strain. Nano Letters, 10, 3486-3489. https://doi.org/10.1021/nl101617x |
[25] | 颜平兰, 李金. 平面应变对二维单层氮化镓电子性质的调控作用[J]. 湘潭大学自然科学学报, 2017, 39(3): 14-17. |
[26] | Li, J., Gui, G. and Zhong, J.X. (2008) Tunable Bandgap Struc-tures of Two-Dimensional Boron Nitride. Journal of Applied Physics, 104, Article ID: 094311. https://doi.org/10.1063/1.3006138 |
[27] | Desai, S.B., Seol, G., Kang, J.S., et al. (2014) Strain Induced Indirect to Direct Bandgap Transition in Multilayer WSe2. Nano Letters, 14, 4592-4597. https://doi.org/10.1021/nl501638a |
[28] | He, K., Poole, C., Mak, K.F. and Shan, J. (2013) Experimental Demonstration of Continuous Electronic Structure Tuning via Strain in Atomically Thin MoS2. Nano Letters, 13, 2931-2936. https://doi.org/10.1021/nl4013166 |
[29] | Wang, Y.L., Cong, C.X., Yang, W.H., et al. (2015) Strain-Induced Direct-Indirect Bandgap Transition and Phonon Modulation in Monolayer WS2. Nano Research, 8, 2562-2572. https://doi.org/10.1007/s12274-015-0762-6 |
[30] | Niu, T.C., Meng, Q.L., Zhou, D.C., et al. (2020) Large-Scale Synthesis of Strain-Tunable Semiconducting Antimonene on Copper Oxide. Advanced Materials, 32, Article ID: 1906873. https://doi.org/10.1002/adma.201906873 |
[31] | Li, Y., Yang, S.X. and Li, J.B. (2014) Modulation of the Electronic Properties of Ultrathin Black Phosphorus by Strain and Electrical Field. The Journal of Physical Chemistry C, 118, 23970-23976. https://doi.org/10.1021/jp506881v |
[32] | Huang, S.Y., Zhang, G.W., Fan, F.R, et al. (2019) Strain-Tunable van der Waals Interactions in Few-Layer Black Phosphorus. Nature Com-munications, 10, Article No. 2447. https://doi.org/10.1038/s41467-019-10483-8 |
[33] | Johari, P. and Shenoy, V.B. (2012) Tuning the Electronic Properties of Semiconducting Transition Metal Dichalcogenides by Applying Mechanical Strains. ACS Nano, 6, 5449-5456. https://doi.org/10.1021/nn301320r |
[34] | 李莎莎. 锗烯电子结构的外场调控理论研究[D]: [硕士学位论文]. 长沙: 湖南师范大学, 2019. |
[35] | Xia, C., Zhang, Q., Xiao, W., et al. (2018) Quantum Size and Electric Field Modulations on Electronic Structures of SnS2/BN Hetero-Multilayers. Journal of Physics D: Applied Physics, 51, Article ID: 215303.
https://doi.org/10.1088/1361-6463/aabd0c |
[36] | 潘龙飞. 半导体二维SnS材料在电场下的性质研究[D]: [硕士学位论文]. 北京: 北京理工大学, 2016. |
[37] | 王昌英, 路宇畅, 任翠兰, 等. 电场、应力和电荷态对Ti2CO2电子性质调控的理论研究[J]. 无机材料学报, 2020, 35(1): 73-80. |
[38] | 谢剑锋. 六角氮化硼片带隙调制的第一性原理研究[D]: [硕士学位论文]. 湘潭: 湘潭大学. |
[39] | Liu, X. and Li, Z. (2015) Electric Field and Strain Effect on Graphene-MoS2 Hybrid Structure: Ab Initio Calculations. The Journal of Physical Chemistry Letters, 6, 3269-3275. https://doi.org/10.1021/acs.jpclett.5b01233 |
[40] | 刘贵立, 杨忠华. 变形及电场作用对石墨烯电学特性影响的第一性原理计算[J]. 物理学报, 2018, 67(7): 192-198. |
[41] | Uwanno, T., Taniguchi, T., Watanabe, K. and Nagashio, K. (2018) Electrically Inert h-BN/Bilayer Graphene Interface in All-Two-Dimensional Heterostructure Field Effect Transistors. ACS Applied Materials & Interfaces, 10, 28780- 28788. https://doi.org/10.1021/acsami.8b08959 |
[42] | 李佳斌. GaN掺杂的电子结构与光学特性的第一性原理研究[D]: [博士学位论文]. 西安: 西安电子科技大学, 2019. |
[43] | 王清霞. 掺杂原子对单层SnSe材料电学性质和磁学性质影响的第一性原理研究[D]: [硕士学位论文]. 郑州: 郑州大学, 2016. |
[44] | 孙志远. 碱金属掺杂单层MoSSe和MoSi2N4的第一性原理研究[D]: [硕士学位论文]. 荆州: 长江大学, 2022. |
[45] | Denis, P.A. (2010) Band Gap Opening of Monolayer and Bilayer Graphene Doped with Aluminium, Silicon, Phosphorus, and Sulfur. Chemical Physics Letters, 492, 251-257. https://doi.org/10.1016/j.cplett.2010.04.038 |
[46] | 李玲霞. 二维材料异质结电子特性调控的模拟研究[D]: [硕士学位论文]. 兰州: 兰州理工大学, 2022. |
[47] | 庄乾勇. 二维SnSe/GeTe异质结光电性质的第一性原理研究[D]: [硕士学位论文]. 湘潭: 湘潭大学, 2021. |