全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进DeepLabv3+的高分辨率遥感影像屋顶提取方法
Roof Extraction Method of High-Resolution Remote Sensing Image Based on Improved DeepLabv3+

DOI: 10.12677/AIRR.2023.122009, PP. 62-68

Keywords: 遥感图像,DeepLabv3+,语义分割,特征融合,通道注意力
Remote Sensing Image
, DeepLabv3+, Semantic Segmentation, Feature Fusion, Channel Attention

Full-Text   Cite this paper   Add to My Lib

Abstract:

DeepLabv3+网络能够有效地解决高分辨率遥感图像语义分割的挑战。经过ResNet50骨干网络的支持,我们对DeepLabv3+模型进行了深入的研究,利用Adam梯度下降法和RELU激活函数,有效地处理了遥感影像中的建筑屋顶,提高了语义分割的精度和速度,能够更快地收敛到最优解。同时,空洞空间金字塔池化模块(ASPP)与解码器模块(decoder)的普通卷积部分被并行加权的空洞卷积代替,从而减少参数数量,提升模型的性能。IoU的准确度达到89.2%,超过DeepLabv3+算法,降低了特征提取的误差,同时也大大减少了细节信息的丢失,为最终的语义分割带来了显著的改善。
DeepLabv3+network can effectively solve the challenge of semantic segmentation of high-resolution remote sensing images. With the support of the ResNet50 backbone network, we have conducted in-depth research on the DeepLabv3+ model. Using the Adam gradient descent method and RELU activation function, we have effectively processed the building roof in remote sensing images, improved the accuracy and speed of semantic segmentation, and can quickly converge to the optimal solution. At the same time, the common convolution part of the hole space pyramid pooling module (ASPP) and the decoder module (decoder) are parallelly weighted to reduce the number of parameters and improve the performance of the model. The accuracy of IoU reaches 89.2%, which exceeds the DeepLabv3+ algorithm, reduces the error of feature extraction, and also greatly reduces the loss of detail information, bringing significant improvement to the final semantic segmentation.

References

[1]  韩玲, 杨朝辉, 李良志, 刘志恒, 黄勃学. 利用Deeplab v3提取高分辨率遥感影像道路[J]. 遥感信息, 2021, 36(1): 22-28.
[2]  袁立, 袁吉收, 张德政. 基于DeepLab-v3+的遥感影像分类[J]. 激光与光电子学进展, 2019, 56(15): 236-243.
[3]  Qiu, C., Schmitt, M., Gei?, C., Chen, T.-H.K. and Zhu, X.X. (2020) A Framework for Large-Scale Mapping of Human Settlement Extent from Sentinel-2 Images via Fully Convolutional Neural Networks. ISPRS Journal of Photogrammetry and Remote Sensing, 163, 152-170.
https://doi.org/10.1016/j.isprsjprs.2020.01.028
[4]  Xia, L., Zhang, X., Zhang, J., Wu, W. and Gao, X. (2020) Refined Extraction of Buildings With the Semantic Edge- Assisted Approach from Very High-Resolution Remotely Sensed Imagery. International Journal of Remote Sensing, 41, 8352-8365.
https://doi.org/10.1080/01431161.2020.1775322
[5]  Ahmed, N., Mahbub, R.B. and Rahman, R.M. (2020) Learning to Extract Buildings from Ultra-High-Resolution Drone Images and Noisy Labels. International Journal of Remote Sensing, 41, 8216-8237.
https://doi.org/10.1080/01431161.2020.1763496
[6]  Hoffmann, E.J., Wang, Y., Werner, M., Kang, J. and Zhu, X.X. (2019) Model Fusion for Building Type Classification from Aerial and Street View Images. Remote Sensing, 11, Article No. 1259.
https://doi.org/10.3390/rs11111259
[7]  Ji, S., Wei, S. and Lu, M. (2019) Fully Convolutional Networks for Multisource Building Extraction from an Open Aerial and Satellite Imagery Data Set. IEEE Transactions on Geoscience and Remote Sensing, 57, 574-586.
https://doi.org/10.1109/TGRS.2018.2858817
[8]  陈丹丹. 基于Deeplabv3+的高分遥感影像道路损毁信息提取方法研究[D]: [硕士学位论文]. 北京: 中国地震局地震预测研究所, 2020.
https://doi.org/10.27488/d.cnki.ggjfz.2020.000004
[9]  林耀辉. 基于DeepLabv3+的遥感影像语义分割研究[D]: [硕士学位论文]. 福州: 福建师范大学, 2021.
https://doi.org/10.27019/d.cnki.gfjsu.2021.001903
[10]  刘文祥, 舒远仲, 唐小敏, 刘金梅. 采用双注意力机制Deeplabv3+算法的遥感影像语义分割[J]. 热带地理, 2020, 40(2): 303-313.
https://doi.org/10.13284/j.cnki.rddl.003229
[11]  元玉梅. 基于深度学习的高分辨率遥感影像建筑区提取方法[D]: [硕士学位论文]. 南京: 南京邮电大学, 2021.
[12]  高芳, 舒远仲, 朱雯雯. 基于改进Deeplabv3+的遥感图像语义分割研究[J]. 南昌航空大学学报(自然科学版), 2022, 36(2): 24-31.
[13]  孙昊堃. 基于深度学习的图像语义分割算法研究[D]: [硕士学位论文]. 贵阳: 贵州大学, 2022.
[14]  张群. 基于改进的SegNet城市遥感图像语义分割算法研究[D]: [硕士学位论文]. 南昌: 南昌大学, 2021.
https://doi.org/10.27232/d.cnki.gnchu.2021.002846
[15]  李宇, 肖春姣, 张洪群, 李湘眷, 陈俊. 深度卷积融合条件随机场的遥感图像语义分割[J]. 国土资源遥感, 2020, 32(3): 15-22.
[16]  赵斐, 张文凯, 闫志远, 于泓峰, 刁文辉. 基于多特征图金字塔融合深度网络的遥感图像语义分割[J]. 电子与信息学报, 2019, 41(10): 2525-2531.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133