全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于深度学习的办公室吸烟行为检测
Office Smoking Behavior Detection Based on Deep Learning

DOI: 10.12677/AIRR.2023.122008, PP. 55-61

Keywords: 深度学习,吸烟检测,YOLO模型
Deep Learning
, Smoking Testing, YOLO Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

吸烟有害健康,为优化办公环境以及保证办公室人员身心健康。随着深度学习中卷积神经网络(Convolutional Neural Network, CNN)在目标检测领域上的发展,其目标检测方法有:单阶段检测(YOLO、SSD、RetinaNet等)、双阶段检测(Fast RCNN、Faster RCNN、Cascade RCNN等)。相比于传统的手工设计特征算法,基于深度学习的方法通过学习大量标注数据来自行进行特征的学习和提取,并预测或识别出结果,基于深度神经网络的目标检测方法具有更好的特征提取能力和分类识别效果。本文设计了采用YOLO深度学习算法的办公室吸烟行为检测方法。通过网络公开数据集收集的吸烟数据集,经过对数据集的整合与调整形成最终进行实验的吸烟行为检测数据集。用吸烟行为检测数据集分别训练YOLOv5,YOLOv6,YOLOv7,YOLOx四个模型,通过对比训练产生的结果得到办公室吸烟行为检测的最佳训练模型。实验结果表明,在办公室吸烟行为检测实验中,YOLOv5为检测效果最优异的模型,其精确度均值(mAP):76.6%,平均推理时间:17.1 ms。
Smoking is harmful to health, in order to optimize the office environment and ensure the physical and mental health of office staff. With the development of Convolutional Neural Network (CNN) in the field of target detection, the methods of Convolutional Neural Network detection include one-stage detection (Yolo, SSD, RetinaNet, etc.) and two-stage detection (Fast RCNN, Faster RCNN, Cascade RCNN, etc.). Compared with the traditional hand-designed feature algorithm, the method based on deep learning can learn and extract feature by learning a lot of labeled data, and predict or recognize the result, the object detection method based on deep neural network has better feature extraction ability and classification recognition effect. In this paper, Yolo deep learning algorithm is used to detect office smoking behavior. The smoking data set collected through the web-based open data set was integrated and adjusted to form the smoking behavior detection data set for the final experiment. Four models, Yolov5, YOLOV6, Yolov7 and Yolox, were trained with smoking behavior detection data set. The best training model of office smoking behavior detection was obtained by comparing the results of training. The results showed that YOLOV5 was the best model in the detection of office smoking behavior. The mean accuracy (mAP) was 76.6% and the mean reasoning time was 17.1 ms.

References

[1]  汪祖云, 廖惠敏, 张日东, 刘鹏宇, 贾克斌. 结合烟雾多特征的出租车司机吸烟行为检测[C]//中国高科技产业化研究会智能信息处理产业化分会. 第十二届全国信号和智能信息处理与应用学术会议论文集. 2018: 368-373.
[2]  苏翔宇. 基于烟雾多特征的吸烟行为识别算法研究[D]: [硕士学位论文]. 秦皇岛: 燕山大学, 2014.
[3]  丁宏杰. 基于视频烟雾的吸烟行为识别与研究[D]: [硕士学位论文]. 秦皇岛: 燕山大学, 2013.
[4]  邸昱卿, 张云伟. 基于人体关键点的吸烟行为识别方法研究[J]. 电视技术, 2022, 46(5): 12-16+29.
https://doi.org/10.16280/j.videoe.2022.05.003
[5]  王超. 针对吸烟行为的手势识别算法研究[D]: [硕士学位论文]. 秦皇岛: 燕山大学, 2013.
[6]  李倩. 基于深度学习的烟支检测技术研究与应用[D]: [硕士学位论文]. 西安: 西安邮电大学, 2020.
https://doi.org/10.27712/d.cnki.gxayd.2020.000027
[7]  Redmon, J. and Farhadi, A. (2016) YOLO9000: Better, Faster, Stronger. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21-26 July 2017, 6517-6525.
https://doi.org/10.1109/CVPR.2017.690
[8]  Redmon, J. and Farhadi, A. (2018) YOLOv3: An Incremental Improvement.
https://arxiv.org/abs/1804.02767
[9]  Zhu, X., Lyu, S., Wang, X. and Zhao, Q. (2021) TPH-YOLOV5: Improved YOLOv5 Base on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios. 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 11-17 October 2021, 2778-2788.
https://doi.org/10.1109/ICCVW54120.2021.00312
[10]  Wang, C.Y., Bochkovskiy, A. and Liao, H.Y.M. (2022) YOLOv7: Trainable Bag-of-Freebies Sets New States-of-the-Art for Real-Time Object Detectors.
https://arxiv.org/abs/2207.02696
[11]  Girshick R. (2015) Fast R-CNN. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 07-13 December 2015, 5-7.
https://doi.org/10.1109/ICCV.2015.169
[12]  Ren, S., He, K., Girshick, R. and Sun, J. (2015) Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149.
https://doi.org/10.1109/TPAMI.2016.2577031

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133