|
矿渣与碱用量对地聚合物混凝土物理力学性能的影响
|
Abstract:
以粉煤灰和矿渣为硅铝质原材料,Na2SiO3与NaOH为碱性激发剂制备地聚合物混凝土,探究粉煤灰与矿渣掺比、碱激发剂用量、砂率等因素对地聚合物混凝土力学性能,吸水率的影响。研究表明矿渣含量增加,地聚合物混凝土的力学强度也随之增大,但吸水率减小,矿渣含量超过40%后力学强度的增长变缓,当矿渣含量为80%时力学强度最大。随着碱用量的增加地聚合物混凝土的吸水率增加,但力学强度先增后减,碱用量为11%时力学性能最优。随着砂率增加地聚合物混凝土的力学强度先增后减,当砂率为30%时力学强度最大。
Geopolymer concrete was prepared by using fly ash and slag as silicon-aluminum raw materials, and Na2SiO3 and NaOH as alkaline activators. The effects of fly ash and slag ratio, alkali activator dosage and sand ratio on the mechanical properties and water absorption of geopolymer concrete were investigated. The results show that the mechanical strength of geopolymer concrete increases with the increase of slag content, but the water absorption decreases. When the slag content exceeds 40%, the growth of mechanical strength slows down. When the slag content is 80 %, the mechanical strength is the largest. With the increase of alkali dosage, the water absorption of geopolymer concrete increases, but the mechanical strength increases first and then decreases. The mechanical properties are optimal when the alkali dosage is 11%. With the increase of sand ratio, the mechanical strength of geopolymer concrete increases first and then decreases. When the sand ratio is 30 %, the mechanical strength is the largest.
[1] | Deventer, J., Provis, J.L. and Duxson, P. (2012) Technical and Commercial Progress in the Adoption of Geopolymer Cement. Minerals Engineering, 29, 89-104. https://doi.org/10.1016/j.mineng.2011.09.009 |
[2] | 张长森, 朱宝贵, 李杨, 等. 镍渣/偏高岭土基地聚合物的制备与表征[J]. 材料导报, 2017, 31(23): 193-197. |
[3] | Sg, A., Cong, M.B., Gl, B., et al. (2019) Cleaner One-Part Geopolymer Prepared by Introducing Fly Ash Sinking Spherical Beads: Properties and Geopolymerization Mechanism. Journal of Cleaner Production, 219, 686-697.
https://doi.org/10.1016/j.jclepro.2019.02.116 |
[4] | 张大旺, 王栋民. 地质聚合物混凝土研究现状[J]. 材料导报, 2018, 32(9): 1519-1527+1540. |
[5] | 许凌云, 张祖华, 史才军, 等. 地质聚合物混凝土力学性能和结构性能的研究进展[J]. 材料导报, 2022(7): 1-29. |
[6] | Komljenovic, M., Bascarevic, R. and Bradic, R. (2010) Mechanical and Microstructural Properties of Alkali-Activated Fly Ash Geopolymers. Journal of Hazardous Materials, 181, 35-42. https://doi.org/10.1016/j.jhazmat.2010.04.064 |
[7] | Puligilla, S. and Mondal, P. (2013) Role of Slag in Microstructural Development and Hardening of Fly Ash-Slag Geopolymer. Cement and Concrete Research, 43, 70-80. https://doi.org/10.1016/j.cemconres.2012.10.004 |
[8] | Nath, P. and Sarker, P.K. (2014) Effect of GGBFS on Setting, Workability and Early Strength Properties of Fly Ash Geopolymer Concrete Cured in Ambient Condition. Construction & Building Materials, 66, 163-171.
https://doi.org/10.1016/j.conbuildmat.2014.05.080 |
[9] | 梁广伟, 诸华军, 严鹏, 等. 矿渣-粉煤灰基地聚合物抗冻性能的研究[J]. 非金属矿, 2018, 41(3): 11-13. |
[10] | Mallikarjuna Rao, G. and Gunneswara Rao, T.D. (2018) A Quantitative Method of Approach in Designing the Mix Proportions of Fly Ash and GGBS-Based Geopolymer Concrete. Australian Journal of Civil Engineering, 16, 53-63.
https://doi.org/10.1080/14488353.2018.1450716 |
[11] | 杨立荣, 王春梅, 封孝信, 等. 粉煤灰/矿渣基地聚合物的制备及固化机理研究[J]. 武汉理工大学学报, 2009, 31(7): 115-119. |
[12] | 丁琴, 陶明, 李响. 地聚合物混凝土配比及力学性能研究[J]. 黄金科学技术, 2022, 30(2): 243-253. |
[13] | 赵素宁, 曲烈, 张泉. 粉煤灰地聚物的力学性能及其化学分析[J]. 山西建筑, 2010, 36(25): 1-3. |
[14] | 黄华, 郭梦雪, 张伟, 等. 粉煤灰-矿渣基地聚物混凝土力学性能与微观结构[J]. 哈尔滨工业大学学报, 2022, 54(3): 74-84. |
[15] | 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081-2019 [S]. 北京: 中国建筑工业出版社, 2019. |
[16] | 彭玉清, 郭荣鑫, 林志伟, 等. 粉煤灰地聚合物力学性能影响因素研究综述[J]. 硅酸盐通报, 2021, 40(3): 858-866. |
[17] | 常利, 艾涛, 延西利, 等. 地聚合物水泥路面快速修补材料性能研究[J]. 武汉理工大学学报, 2014, 36(5): 49-54. |
[18] | Marcin, M., Sisol, M. and Brezani, I. (2016) Effect of Slag Addition on Mechanical Properties of Fly ash Based Geopolymers. Procedia Engineering, 151, 191-197. https://doi.org/10.1016/j.proeng.2016.07.380 |
[19] | Ismail, I., Bernal, S.A., Provis, J.L., et al. (2014) Modification of Phase Evolution in Alkali-Activated Blast Furnace Slag by the Incorporation of Fly Ash. Cement and Concrete Composites, 45, 125-135.
https://doi.org/10.1016/j.cemconcomp.2013.09.006 |
[20] | Provis, J.L. and Deventer, J. (2009) Geopolymers: Structure, Processing, Properties and Industrial Applications. Woodhead-Verlag, Berlin. |
[21] | Phair, J.W. and Van Deventer, J.S.J. (2002) Effect of the Silicate Activator pH on the Microstructural Characteristics of Waste-Based Geopolymers. International Journal of Mineral Processing, 66, 121-143.
https://doi.org/10.1016/S0301-7516(02)00013-3 |