|
基于D-Vine Copula构建内蒙古四邻近地区风速相依模型
|
Abstract:
采用D-Vine Copula方法测度内蒙古四近邻地区最大风速的关联性,该方法将多元联合分布通过Pair-Copula分解成边缘密度和二元Copula函数的乘积形式。根据Kendall秩相关系数选择最优的D-Vine Copula结构,使用两阶段法求解模型参数。首先构建边缘密度,然后使用逐树估计和联合估计方法估计二元Copula参数并选择最优分布。通过比较赤池信息量(AIC)发现,相比于逐树估计方法,联合估计参数的结果拟合效果更优。模拟发现四近邻地区间风速间存在不同形式的关联性,D-Vine Copula方法能够灵活的测度这种高维随机变量的关联性差异。
The D-Vine Copula method is used to measure the correlation of maximum wind speed in four neighboring areas of Inner Mongolia. Based on this method, the multivariate joint distribution is decomposed into a product of the marginal densities and the bivariate Copula functions in terms of the Pair-Copula technique. The optimal D-Vine Copula structure is selected according to Kendall rank correlation coefficient, and two-stage strategy is used to solve the model parameters. The marginal density is fitted first, and then the Pair-Copula function is simulated by the tree by tree estimation and global joint density estimation methods. By Akaike Information Criterion (AIC), it can be seen that the fitting effect of the global joint density estimation is better than that of tree by tree. It is found that there are different forms of correlations between wind speeds in neighboring areas, and the D-Vine Copula method can flexibly measure the correlation of such high-dimensional random variables.
[1] | Wu, J., Wang, J. and Chi, D. (2013) Wind Energy Potential Assessment for the Site of Inner Mongolia in China. Re-newable and Sustainable Energy Reviews, 21, 215-228. https://doi.org/10.1016/j.rser.2012.12.060 |
[2] | 吴巍, 汪可友, 韩蓓, 等. 基于Pair Copula的随机潮流三点估计法[J]. 电工技术学报, 2015(9): 121-128. |
[3] | Sklar, A. (1959) Fonctions de Répartitionà n Dimensions et Leurs Marges. Annales de l’ISUP, 8, 229-231. |
[4] | Schindler, D. and Jung, C. (2018) Copula-Based Estimation of Directional Wind Energy Yield: A Case Study from Germany. Energy Conversion & Management, 169, 359-370. https://doi.org/10.1016/j.enconman.2018.05.071 |
[5] | Haghi, H.V., Bina, M.T., Golkar, M.A., et al. (2010) Using Copulas for Analysis of Large Datasets in Renewable, Distributed Generation: PV and Wind Power Integration in Iran. Renewable Energy, 35, 1991-2000.
https://doi.org/10.1016/j.renene.2010.01.031 |
[6] | Stephen, B., Galloway, S.J., McMillan, D., et al. (2011) A Cop-ula Model of Wind Turbine Performance. IEEE Transactions on Power Systems, 26, 965-966. https://doi.org/10.1109/TPWRS.2010.2073550 |
[7] | 张宁, 康重庆. 风电出力分析中的相依概率性序列运算[J]. 清华大学学报, 2012, 52(5): 704-709. |
[8] | Joe, H. (1996) Families of m-Variate Distributions with Given Margins and m(m?1)/2 Bivariate Dependence Parameters. In: Rüschendorf, L., Schweizer, B. and Taylor, M.D., Eds., Distributions with Fixed Marginals and Related Topics, Lecture Notes—Monograph Series, Vol. 28, Institute of Mathematical Statis-tics, Beachwood, 120-141.
https://doi.org/10.1214/lnms/1215452614 |
[9] | Bedford, T. and Cooke, R. (2001) Probability Density Decomposi-tion for Conditionally Dependent Random Variables Modeled by Vines. Annals of Mathematics and Artificial Intelligence, 32, 245-268. |
[10] | Cooke, B. (2002) Vines: A New Graphical Model for Dependent Random Variables. Annals of Sta-tistics, 30, 1031- 1068. https://doi.org/10.1214/aos/1031689016 |
[11] | Barthel, N., Geerdens, C., Killiches, M., et al. (2018) Vine Copula Based Likelihood Estimation of Dependence Patterns in Multivariate Event Time Data. Computa-tional Statistics & Data Analysis, 117, 109-127.
https://doi.org/10.1016/j.csda.2017.07.010 |
[12] | 胡月, 雷柳荣, 王甜甜, 等. 东盟国家货币兑人民币汇率相依性研究——基于Vine Copula模型[J]. 数学的实践与认识, 2021, 51(18): 89-101. |
[13] | Diímann, J., Brechmann, E.C., Czado, C., et al. (2013) Selecting and Estimating Regular Vine Copulae and Application to Financial Returns. Computa-tional Statistics & Data Analysis, 59, 52-69.
https://doi.org/10.1016/j.csda.2012.08.010 |
[14] | Pereira, G., Veiga, A., Erhardt, T., et al. (2016) Spatial R-Vine Copula for Streamflow Scenario Simulation. 2016 Power Systems Computation Conference (PSCC), Genoa, 20-24 June 2016, 540-546.
https://doi.org/10.1109/PSCC.2016.7540939 |
[15] | 刘源纪, 昌明, 张验科, 等. 基于Vine Copula的短期径流预报不确定性分析[J]. 水力发电学报, 2022, 41(7): 95-105. |
[16] | 曾文颖, 徐明庆, 宋松柏, 等. 基于R-Vine Copula函数的极端降水联合分布模型及风险识别[J]. 水资源保护, 2022, 38(6): 96-103. |
[17] | Cai, J.L., Xu, Q.S., Cao, M.J., et al. (2019) Capacity Credit Evaluation of Correlated Wind Resources Using Vine Copula and Improved Importance Sampling. Applied Sciences, 9, Article No. 199. https://doi.org/10.3390/app9010199 |
[18] | Goh, H., Peng, G.M., Zhang, D.D., et al. (2022) A New Wind Speed Scenario Generation Method Based on Principal Component and R-Vine Copula Theories. Energies, 15, Article No. 2698. https://doi.org/10.3390/en15072698 |
[19] | Wais, P. (2017) A Re-view of Weibull Function in Wind Sector. Renewable & Sustainable Energy Reviews, 70, 1099- 1107. https://doi.org/10.1016/j.rser.2016.12.014 |
[20] | Patidar, H., Shende, V., Baredar, P., et al. (2022) Comparative of Optimal Weibull Parameters for Wind Power Predictions Using Numerical and Metaheuristic Optimization Methods for Different Indian Terrains. Environmental Science and Pollution Research, 30, 30874-30891. https://doi.org/10.1007/s11356-022-24395-6 |
[21] | Hussain, I., Haider, A., Ullah, Z., et al. (2023) Comparative Analysis of Eight Numerical Methods Using Weibull Distribution to Estimate Wind Power Density for Coastal Areas in Pakistan. Energies, 16, Article No. 1515.
https://doi.org/10.3390/en16031515 |