|
Applied Physics 2023
基于第一性原理的SiO2晶体的光学性能研究——α-SiO2和β-SiO2晶体的光学性能对比分析
|
Abstract:
SiO2具有制备简单、粒径可调、光学透明性和化学稳定性等优异性能,作为一种可改性的光电材料,以其优异的性能受到越来越多的关注,在光电传感器、光信息处理和存储装置、光通信及激光器拉曼晶体等领域拥有广阔的前景。本文应用第一性原理计算模拟软件Material Studio的CASTEP模块构建了α-SiO2晶体和β-SiO2晶体,并对其进行几何优化使其达到稳定,分析了压力对晶格常数的影响,在514.5 nm激光入射下,分析了两种晶体的光学性能,结果表明,α-SiO2晶体和β-SiO2晶体对光的反射、折射和小光系数均是等价的,而对于激光拉曼散射的能力差别很大,α-SiO2晶体的拉曼频移主要集中在200 cm?1范围内,β-SiO2晶体的拉曼频移主要集中在1000 cm?1~1300 cm?1范围内,随着压力的增加,两种晶体的拉曼谱线频移量均增大。本文的研究拓宽了SiO2晶体在光学元件上的应用,为拉曼晶体提供了更多的选择性,对实验提供了更多理论支持。
SiO2 has excellent properties such as simple preparation, adjustable particle size, optical trans-parency and chemical stability. As a kind of modified photoelectric material, SiO2 has attracted more and more attention for its excellent performance. It has broad prospects in the fields of photoelectric sensors, optical information processing and storage devices, optical communication and laser Raman crystals. In this paper, α-SiO2 crystals and β-SiO2 crystals are constructed by the CASTEP module of the first-principles calculation simulation software Material Studio, and geometric optimization is carried out to make them stable. The influence of pressure on lattice constant is analyzed, and the optical properties of the two crystals are analyzed under the incident laser light of 514.5 nm laser. The results show that the light reflection, refraction and small light coefficient of α-SiO2 crystals and β-SiO2 crystals are equivalent, but the Raman scat-tering ability of α-SiO2 crystals is very different. The Raman frequency shift of α-SiO2 crystals is mainly concentrated in the range of 200 cm?1. The Raman frequency shift of β-SiO2 crystals is mainly concentrated in the range of 1000 cm?1~1300 cm?1, and with the increase of pressure, the Raman line frequency shift of both crystals increases. The research in this paper broadens the application of SiO2 crystals in optical components, provides more selectivity for Raman crystals, and provides more theoretical support for experiments.
[1] | Knall, J., Engholm, M., Boilard, T., Bernier, M., Vigneron, P.B., Yu, N. and Digonnet, M.J.F. (2021) Radiation-Ba- lanced Silica Fiber Laser. Optica, 8, 830-833. https://doi.org/10.1364/OPTICA.425115 |
[2] | Chen, X., Feng, W., Zhang, G. and Gao, Y. (2019) Raman Spectra of Quartz and Pb4+-Doped SiO2 Crystals at Different Temperature and Pressure. Crystals, 9, Article No. 569. https://doi.org/10.3390/cryst9110569 |
[3] | Knall, J.M. and Digonnet, M.J. (2021) Design of High-Power Radiation-Balanced Silica Fiber Lasers with a Doped Core and Cladding. Journal of Lightwave Technology, 39, 2497-2504. https://doi.org/10.1109/JLT.2021.3053466 |
[4] | Sun, S., Jia, B., Hu, H., Han, L., Liu, G., Gao, C. and Lu, P. (2019) Geometric and Optical Properties of Cluster Model of Yb-Doped Silica Optical Fiber. Journal of Cluster Science, 30, 1205-1210.
https://doi.org/10.1007/s10876-019-01603-x |
[5] | Trukhin, A.N., Antuzevics, A., Golant, K. and Griscom, D.L. (2017) Luminescence of Phosphorus Doped Silica Glass. Journal of Non-Crystalline Solids, 462, 10-16. https://doi.org/10.1016/j.jnoncrysol.2017.02.002 |
[6] | Guan, X., Zhang, R., Jia, B., Chen, X., Yan, B., Peng, G.D. and Lu, P. (2019) Electronic and Optical Properties of Ge- Doped Silica Optical Fiber. Modern Physics Letters B, 33, Article ID: 1950150.
https://doi.org/10.1142/S0217984919501501 |
[7] | Sewell, H. and Mulkens, J. (2009) Materials for Optical Lithography Tool Application. Annual Review of Materials Research, 39, 127-153. https://doi.org/10.1146/annurev-matsci-082908-145309 |
[8] | Bitnar, B. (2003) Silicon, Germanium and Sili-con/Germanium Photocells for Thermophotovoltaics Applications. Semiconductor Science and Technology, 18, S221. https://doi.org/10.1088/0268-1242/18/5/312 |
[9] | Baisden, P.A., Atherton, L.J., Hawley, R.A., Land, T.A., Menapace, J.A., Miller, P.E. and Wong, L.L. (2016) Large Optics for the national Ignition Facility. Fusion Science and Technology, 69, 295-351.
https://doi.org/10.13182/FST15-143 |
[10] | 曹娟, 张兆慧, 徐灿. SiO2纳米线中拉曼光谱的理论研究[J]. 原子与分子物理学报学, 2011, 28(1): 31-35. |
[11] | 祖恩东, 李茂材, 张鹏翔. 二氧化硅类玉石的显微拉曼光谱研究[J]. 昆明理工大学学报, 2000, 25(3): 77-79. |
[12] | Liu, M., Lu, P.F., Yang, Y., Wu, L.Y., Su, R. and Chen, J. (2015) Structural and Optical Properties of Point Defects in α-SiO2 Cluster. Communications in Theoretical Physics, 64, Article No. 244.
https://doi.org/10.1088/0253-6102/64/2/244 |
[13] | Mankad, V. and Jha, P.K. (2016) First-Principles Study of Water Adsorption on α-SiO2 [110] Surface. AIP Advances, 6, Article ID: 085001. https://doi.org/10.1063/1.4960455 |
[14] | 郭杰荣, 马磊. 石英α-SiO2晶体基本特性的原子模拟[J]. 材料科学, 2019, 9(4): 355-360. |
[15] | Wang, C., Guo, X., Zhang, S., Qi, Y. and Gao, S. (2023) Analysis of the Electronic Structure of β-SiO2 Intrinsic Defects Based on Density Functional Theory. Materials Today Communications, 35, Article ID: 105554.
https://doi.org/10.1016/j.mtcomm.2023.105554 |
[16] | 张小芳. 一维二氧化硅纳米材料的光谱研究[D]: [硕士学位论文]. 兰州: 兰州大学, 2008. |