全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

热冷原子团中原子干涉仪的最佳高斯脉冲
Optimal Gaussian Pulses for Atom Interferometer in a Thermal Cold Atom Cloud

DOI: 10.12677/MP.2023.133008, PP. 62-70

Keywords: 原子干涉仪,原子干涉技术,冷热原子团,Atom Interferometer, Atom Interferometry Techniques, Thermal Cold Atoms

Full-Text   Cite this paper   Add to My Lib

Abstract:

当原子干涉仪与热冷原子团一起工作时,存在与原子动量分布相关的多普勒效应。由于传统的矩形脉冲序列不能很好地补偿原子速度引起的效应,原子干涉仪的精度就会下降。将矩形脉冲序列替换为高斯脉冲序列后,变化振幅的高斯脉冲可以补偿一些多普勒效应,从而提高干涉仪的容忍。采用典型的高斯脉冲序列,原子干涉仪的原子处于激发态的概率比矩形脉冲序列驱动的原子干涉仪高,原子干涉仪的宽度也更宽。优化后的高斯脉冲序列能使原子干涉仪达到期望的原子激发态概率和带宽。
When an atom interferometer works with a thermal cold atom cloud, there is the Doppler Effect as-sociated with the distribution of the momenta of the atoms. Because conventional rectangle pulse sequence cannot well compensate for the effect induced by the velocity of the atom, the precision of the atom interferometer will degrade. By replacing the rectangle pulse sequence with a Gaussian pulse sequence, the tolerance of the interferometer will increase because the Gaussian pulse with varying amplitude can compensate for some Doppler effects. By using a typical Gaussian pulse sequence, the numerical results show that both the probability of the atom in the excited state for the atom interferometer is higher than that of the atom interferometer driven by a rectangle pulse sequence and the width of the atom interferometer is wider. The optimized Gaussian pulse sequence can make the atom interferometer reach the maximum desired probability of the atom in the ex-cited state and the bandwidth.

References

[1]  Kasevich, M.A. and Chu, S. (1991) Atomic Interferometry Using Stimulated Raman Transitions. Physical Review Letters, 67, 181-184.
https://doi.org/10.1103/PhysRevLett.67.181
[2]  Storey, P., Tan, S., Collett, M. and Walls, D. (1994) Path Detection and the Uncertainty Principle. Nature, 367, 626-628.
https://doi.org/10.1038/367626a0
[3]  Tino, G.M. and Kasevich, M.A. (2014) Atom Interferometry: Proceedings of the International School of Physics “Enrico Fer-mi”, Course 188, Varenna on Lake Como, Villa Monastero, 15-20 July 2013. IOS Press, Amsterdam.
[4]  Kasevich, M. and Chu, S. (1992) Measurement of the Gravitational Acceleration of an Atom with a Light-Pulse Atom Interferome-ter. Applied Physics B, 54, 321-332.
https://doi.org/10.1007/BF00325375
[5]  Sorrentino, F., Bertoldi, A., Bodart, Q., Cacciapuoti, L., De Angelis, M., Lien, Y.-H., Prevedelli, M., Rosi, G. and Tino, G. (2012) Simultaneous Measure-ment of Gravity Acceleration and Gravity Gradient with an Atom Interferometer. Applied Physics Letters, 101, Article ID: 114106.
https://doi.org/10.1063/1.4751112
[6]  Fixler, J.B., Foster, G.T., McGuirk, J.M. and Kasevich, M.A. (2007) Atom Interferometer Measurement of the Newtonian Constant of Gravity. Science, 315, 74-77.
https://doi.org/10.1126/science.1135459
[7]  Rosi, G., Sorrentino, F., Cacciapuoti, L., Prevedelli, M. and Tino, G.M. (2014) Precision Measurement of the Newtonian Gravitational Constant Using Cold Atoms. Nature, 510, 518-521.
https://doi.org/10.1038/nature13433
[8]  Sorrentino, F., Bodart, Q., Cacciapuoti, L., Lien, Y.-H., Prevedelli, M., Rosi, G., Salvi, L. and Tino, G.M. (2014) Sensitivity Limits of a Raman Atom Interferometer as a Gravity Gradiometer. Physical Review A, 89, Article ID: 023607.
https://doi.org/10.1103/PhysRevA.89.023607
[9]  Wang, Y.P., Zhong, J.Q., Song, H.W., Zhu, L., Li, Y.M., Chen, X., Li, R.B., Wang, J. and Zhan, M.S. (2017) Location-Dependent Raman Transition in Gravity-Gradient Measurements Using Dual Atom Interferometers. Physical Review A, 95, Article ID: 053612.
https://doi.org/10.1103/PhysRevA.95.053612
[10]  Fu, Z.J., Wu, B., Cheng, B., Zhou, Y., Weng, K.X., Zhu, D., Wang, Z.Y. and Lin, Q. (2019) A New Type of Compact Gravimeter for Long-Term Absolute Gravity Monitoring. Metrologia, 56, Article ID: 025001.
https://doi.org/10.1088/1681-7575/aafcc7
[11]  McGuirk, J.M., Foster, G.T., Fixler, J.B., Snadden, M.J. and Kase-vich, M.A. (2002) Sensitive Absolute-Gravity Gradiometry Using Atom Interferometry. Physical Review A, 65, Article ID: 033608.
https://doi.org/10.1103/PhysRevA.65.033608
[12]  Duan, X.-C., Zhou, M.-K., Mao, D.-K., Yao, H.-B., Deng, X.-B., Luo, J. and Hu, Z.-K. (2014) Operating an Atom-Interferometry-Based Gravity Gradiometer by the Du-al-Fringe-Locking Method. Physical Review A, 90, Article ID: 023617.
https://doi.org/10.1103/PhysRevA.90.023617
[13]  Carney, D., Hook, A., Liu, Z., Taylor, J.M. and Zhao, Y. (2021) Ultralight Dark Matter Detection with Mechanical Quantum Sensors. New Journal of Physics, 23, Article ID: 023041.
https://doi.org/10.1088/1367-2630/abd9e7
[14]  Calmet, X. and Sherrill, N. (2022) Implications of Quantum Gravi-ty for Dark Matter Searches with Atom Interferometers. Universe, 8, Article No. 103.
https://doi.org/10.3390/universe8020103
[15]  Brax, P. and Davis, A.-C. (2016) Atomic Interferometry Test of Dark Energy. Physical Review D, 94, Article ID: 104069.
https://doi.org/10.1103/PhysRevD.94.104069
[16]  Fang, B., Mielec, N., Savoie, D., Altorio, M., Landragin, A. and Geiger, R. (2018) Improving the Phase Response of an Atom Interferometer by Means of Temporal Pulse Shaping. New Journal of Physics, 20, Article ID: 023020.
https://doi.org/10.1088/1367-2630/aaa37c
[17]  Saywell, J., Carey, M., Kuprov, I. and Freegarde, T. (2020) Bise-lective Pulses for Large-Area Atom Interferometry. Physical Review A, 101, Article ID: 063625.
https://doi.org/10.1103/PhysRevA.101.063625
[18]  Jaffe, M., Xu, V., Hasslinger, P., M?uller, H. and Hamilton, P. (2018) Efficient Adiabatic Spin-Dependent Kicks in an Atom Interferometer. Physical Review Letters, 121, Article ID: 040402.
https://doi.org/10.1103/PhysRevLett.121.040402
[19]  Estey, B., Yu, C., Müller, H., Kuan, P.-C. and Lan, S.-Y. (2015) High-Resolution Atom Interferometers with Suppressed Diffraction Phases. Physical Review Letters, 115, Article ID: 083002.
https://doi.org/10.1103/PhysRevLett.115.083002
[20]  Peterson, J.P.S., Sarthour, R.S. and Laflamme, R. (2020) Enhancing Quantum Control by Improving Shaped-Pulse Generation. Physical Review Applied, 13, Article ID: 054060.
https://doi.org/10.1103/PhysRevApplied.13.054060
[21]  Teucher, M. and Bordignon, E. (2018) Improved Signal Fidelity in 4-Pulse DEER with Gaussian Pulses. Journal of Magnetic Resonance, 296, 103-111.
https://doi.org/10.1016/j.jmr.2018.09.003
[22]  Luo, Y., Yan, S., Hu, Q., Jia, A., Wei, C. and Yang, J. (2016) Con-trast Enhancement via Shaped Raman Pulses for Thermal Cold Atom Cloud Interferometry. The European Physical Journal D, 98, Article No. 262.
https://doi.org/10.1140/epjd/e2016-70428-6
[23]  Dunning, A., Gregory, R., Bateman, J., Cooper, N., Himsworth, M., Jones, J.A. and Freegarde, T. (2014) Composite Pulses for Interferometry in a Thermal Cold Atom Cloud. Physical Review A, 90, Article ID: 033608.
https://doi.org/10.1103/PhysRevA.90.033608
[24]  Gillot, P., Cheng, B., Merlet, S. and F Dos Santos, F.P. (2016) Limits to the Symmetry of a Mach-Zehnder-Type Atom Interferometer. Physical Review A, 93, Article ID: 013609.
https://doi.org/10.1103/PhysRevA.93.013609
[25]  McDonald, G.D., Keal, H., Altin, P.A., Debs, J.E., Bennetts, S., Kuhn, C.C.N., Hardman, K.S., Johnsson, M.T., Close, J.D. and Robins, N.P. (2013) Optically Guided Linear Mach-Zehnder Atom Interferometer. Physical Review A, 87, Article ID: 013632.
https://doi.org/10.1103/PhysRevA.87.013632
[26]  Avetisyan, Y.A., Malyshev, V.A. and Trifonov, E.D. (2017) Photon Recoil Momentum in a Bose-Einstein Condensate of a Dilute Gas. Journal of Physics B: Atomic, Molecular and Optical Physics, 50, Article ID: 085002.
https://doi.org/10.1088/1361-6455/aa654c
[27]  McGuinness, H.J., Rakholia, A.V. and Biedermann, G.W. (2012) High Data-Rate Atom Interferometer for Measuring Acceleration. Applied Physics Letters, 100, Article ID: 011106.
https://doi.org/10.1063/1.3673845
[28]  Stoner, R., Butts, D., Kinast, J. and Timmons, B. (2011) Analytical Framework for Dynamic Light Pulse Atom Interferometry at Short Interrogation Times. Journal of the Optical Society of America B, 28, 2418-2429.
https://doi.org/10.1364/JOSAB.28.002418

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133