|
Modern Physics 2023
基于经典电磁理论分子简化模型的分子力与分子势能函数研究
|
Abstract:
分子力的本质是通过分子势场的电磁相互作用,其作用规律很复杂。由于分子力的复杂性,使得分子势能函数更为复杂。本文基于经典电磁理论,通过构建单原子非极性分子简化模型,把孤立分子简化成单原子球状模型的非极性分子,并将核外电子绕核运动的复杂电子云简化成相对稳定的圆形轨道。根据库仑定律、安培定律和分子极化现象对分子间相互作用力的变化规律进行研究,给出分子力函数表达式。并构建分子极化距离约束函数,给出氦分子的实例数据的计算结果,用mathematica软件模拟出氦分子的分子力曲线。同时,根据分子力为保守力,结合分子力函数表达式,给出分子势能函数表达式,仍然通过氦分子的实例数据的计算结果,用mathematica软件模拟出氦分子的分子势能函数曲线。
The essence of molecular force is the electromagnetic interaction through the molecular potential field, and its action law is very complicated. Due to the complexity of molecular force, the molecular potential energy function is more complicated. In this paper, based on classical electromagnetic theory, by constructing a simplified model of monoatomic nonpolar molecules, isolated molecules are reduced to monoatomic spherical models of nonpolar molecules, and the complex electron cloud of extranuclear electrons moving around the core is simplified to a relatively stable circle Shaped track. According to Coulomb’s law, Ampere’s law and molecular polarization phenomena, the change law of the interaction force between molecules is studied, and the expression of molecular force function is given. It constructs the molecular polarization distance constraint function and gives the calculation results of the example data of helium molecules, and mathematica software is used to simulate the molecular force curve of helium molecules. At the same time, according to the conservative force of molecular force, combined with the expression of molecular force function, the expression of molecular potential energy function is given, and the molecular potential energy function curve of helium molecule is simulated by mathematica software through the calculation result of the example data of helium molecule.
[1] | Mason, E.A. and Rice, W.E. (1954) The Intermolecular Potentials of Helium and Hydrogen. The Journal of Chemical Physics, 22, 522-5 35. https://doi.org/10.1063/1.1740100 |
[2] | Chen, Q., Cao, H.H. and Huang, H.B. (2004) A Research on the Interatomic Potential in Molecular Dynamics (MD). Journal of Tianjin Institute of Technology, 20, 101-105. |
[3] | Khan, A.A. and Broyles, A.A. (1965) Effective Interatomic Potentials for Liquid Helium above and be-low the λ Point. Physical Review, 139, 1805-1806. https://doi.org/10.1103/PhysRev.139.A1805 |
[4] | Tang, K.T. and Toennies, J.P. (1984) An Improved Simple Model for the van der Waals Potential Based on Universal Damping Functions for the Dispersion Coefficients. The Journal of Chemical Physics, 80, 3726-3741.
https://doi.org/10.1063/1.447150 |
[5] | Hellmann, R., Bich, E. and Viniogel, E. (2007) Ab Initio Potential Energy Curve for the Helium Atom Pair and Thermophysical Properties of Dilute Helium Gas. I. Helium-Helium Interatomic Potential. Molecular Physics, 105, 3013-3023. https://doi.org/10.1080/00268970701730096 |
[6] | Yntema, J.L. and Schneider, W.G. (1950) On the Intermolecular Potential of Helium. The Journal of Chemical Physics, 18, 646-650. https://doi.org/10.1063/1.1747717 |
[7] | Mason, E.A. (1954) Transport Properties of Gases Obeying a Modified Buckingham (Exp-Six) Potential. The Journal of Chemical Physics, 22, 169-186. https://doi.org/10.1063/1.1740026 |
[8] | Page, C.H. (1938) Van der Waals Forces in Helium. Physical Review, 53, 426-430. https://doi.org/10.1103/PhysRev.53.426 |
[9] | Margenau, H. (1931) The Role of Quadrupole Forces in Van Der Waals Attractions. Physical Review, 38, 747-756.
https://doi.org/10.1103/PhysRev.38.747 |
[10] | Keller, J.M. and Taylor, W.L. (1969) Evaluation of Transport Proper-ties of Gases: The Bruch-McGee Potential for Helium. The Journal of Chemical Physics, 51, 4829-4837. https://doi.org/10.1063/1.1671874 |
[11] | 刘国跃. 双原子分子势能函数的研究进展[J]. 绵阳师范学院学报, 2005, 24(5): 46-51. |
[12] | 赵凯华, 陈熙谋. 电磁学[M]. 第2版. 北京: 高等教育出版社, 2006. |
[13] | 杨福家. 原子物理学[M]. 第4版. 北京: 高等教育出版社, 2008. |
[14] | 李椿, 章立源, 钱尚武. 热学[M]. 第3版. 北京: 高等教育出版社, 2015. |
[15] | 管靖, 熊刚, 杨晓蓉. 热学[M]. 第1版. 北京: 北京师范大学出版社, 2011(1): 29-30. |
[16] | 陈煜, 陈硕. 分子动力学模拟中氨分子势函数的应用[J]. 化工学报, 2012, 63(7): 1995-2000. |
[17] | 黄绍书, 吴寿宠. 建立分子简化模型用经典电磁理论探析分子间作用力[J]. 物理与工程, 2018, 28(Z1): 37-44. |