全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于近红外一区荧光纳米探针的活体光学成像技术在生物医学的研究进展
The Research Progress of in Vivo Optical Imaging Technology Based on Near-Infrared Region I Fluorescenr Nanoprobes in Biomedicine

DOI: 10.12677/CMP.2023.122005, PP. 36-41

Keywords: 近红外一区,医学成像,有机染料,稀土掺杂材料,碳纳米材料
Near-Infrared Region I
, Medical Imaging, Organic Dyes, Rare-Earth Doped Materials, Carbon Nanomaterials

Full-Text   Cite this paper   Add to My Lib

Abstract:

近红外光一区(700 nm~950 nm)生物成像因其能够提供高分辨率、实时成像、深层组织穿透和对生物样本的光损伤最小而受到广泛关注。本综述的主要重点是近红外光一区生物成像中使用的经典材料,包括有机染料、稀土掺杂材料、碳纳米材料等。该综述就提到的材料进行在临床中的应用和各个材料的优劣势以及其进展进行介绍。
Near-infrared region I (700 nm~950 nm) bioimaging has attracted widespread attention due to its ability to provide high-resolution, real-time imaging, deep tissue penetration, and minimal photodamage to biological samples. The main focus of this review is the classic materials used in near-infrared region I bioimaging, including organic dyes, rare-earth doped materials, carbon nanomaterials, and more. This review introduces the clinical applications and advantages of the mentioned materials.

References

[1]  彭士荣, 张立萍. 吲哚菁绿血管造影技术在脑血管病手术中的应用[J]. 护士进修杂志, 2008, 23(23): 2156-2157.
https://doi.org/10.3969/j.issn.1002-6975.2008.23.021
[2]  雷泽华, 高峰畏, 赵欣, 等. 吲哚菁绿荧光显像技术在腹腔镜胆囊切除术中的应用初探[J]. 肝胆胰外科杂志, 2019, 31(9): 522-525.
https://doi.org/10.11952/j.issn.1007-1954.2019.09.003
[3]  高立国. 五甲川吡喃菁染料的合成及性能研究[D]: [硕士学位论文]. 天津: 天津大学, 2012.
[4]  An, F.F., Harikrishna, K., Chen, N., et al. (2017) A Conjugate of Pentamethine Cyanine and 18F as a Positron Emission Tomography/Near-Infrared Fluorescence Probe for Multi-modality Tumor Imaging. International Journal of Molecular Sciences, 18, Article 1214.
https://doi.org/10.3390/ijms18061214
[5]  李永晖. 基于卟啉及七甲川花菁染料的纳米粒子用于肿瘤的PDT和PTT联合治疗[D]: [硕士学位论文]. 天津: 天津大学, 2021.
https://doi.org/10.27356/d.cnki.gtjdu.2021.002312
[6]  刘政, 孙丽宁, 施利毅, 等. 近红外稀土荧光在功能材料领域的研究进展[J]. 化学进展, 2011, 23(1): 153-164.
[7]  Baek, N.S., Kim, Y.H., Eom, Y.K., et al. (2010) Sensitized Near-IR Luminescence of Lanthanide Complexes Based on Push-Pull Diketone Derivatives. Dalton Transactions, 39, 1532-1538.
https://doi.org/10.1039/B915893F
[8]  Pizzoferrato, R., Francini, R., Pietran-toni, S., et al. (2010) Effects of Progressive Halogen Substitution on the Photoluminescence Properties of an Er-bium-Porphyrin Complex. Journal of Physical Chemistry A, 114, 4163-4168.
https://doi.org/10.1021/jp9119183
[9]  Leng, J., Chen, J., Wang, D., et al. (2017) Scalable Preparation of Gd2O3:Yb3+/Er3+ Upconversion Nanophosphors in a High-Gravity Rotating Packed Bed Reactor for Transparent Upconversion Luminescent Films. Industrial & Engineering Chemistry Research, 56, 7977-7983.
https://doi.org/10.1021/acs.iecr.7b02262
[10]  彭微, 程娇娇, 张凌燕, 等. 稀土掺杂的上转换纳米材料的生物毒性与其作用机制研究进展[J]. 生态毒理学报, 2022, 17(4): 315-322.
https://doi.org/10.7524/AJE.1673-5897.20211012001
[11]  Lim, S.Y., Shen, W. and Gao, Z. (2015) Carbon Quantum Dots and Their Applications. Chemical Society Reviews, 44, 362-381.
https://doi.org/10.1039/C4CS00269E
[12]  Dresselhaus, M.S. and Avouris, P. (2001) Introduction to Carbon Materials Research. In: Dresselhaus, M.S., Dresselhaus, G. and Avouris, P., Eds., Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Springer, Berlin, 1-9.
https://doi.org/10.1007/3-540-39947-X_1
[13]  Bachilo, S.M., Strano, M.S., Kittrell, C., et al. (2002) Struc-ture-Assigned Optical Spectra of Single-Walled Carbon Nanotubes. Science, 298, 2361-2366.
https://doi.org/10.1126/science.1078727
[14]  Shen, J., Zhu, Y., Yang, X., et al. (2012) ChemInform Abstract: Graphene Quantum Dots: Emergent Nanolights for Bioimaging, Sensors, Catalysis and Photovoltaic Devices. ChemInform, 5, 437-454.
https://doi.org/10.1002/chin.201229273
[15]  刘玲. 石墨烯量子点-稀土氟化物复合材料的制备及光学性能研究[D]: [硕士学位论文]. 无锡: 江南大学, 2019.
[16]  江燕红. 多功能石墨烯量子点发光材料的合成及应用研究[D]: [硕士学位论文]. 无锡: 江南大学, 2021.
https://doi.org/10.27169/d.cnki.gwqgu.2021.001007
[17]  Sung, S.Y., Su, Y.L., Cheng, W., et al. (2019) Graphene Quantum Dots-Mediated Theranostic Penetrative Delivery of Drug and Photolytics in Deep Tumors by Targeted Biomimetic Nanosponges. Nano Letters, 19, 69-81.
https://doi.org/10.1021/acs.nanolett.8b03249
[18]  Welsher, K., Liu, Z., Sherlock, S.P., et al. (2009) A Route to Brightly Fluorescent Carbon Nanotubes for Near-Infrared Imaging in Mice. Nature Nanotechnology, 4, 773-780.
https://doi.org/10.1038/nnano.2009.294
[19]  Liu, J., Feng, G., Ding, D., et al. (2013) Bright Far-Red/Near-Infrared Fluorescent Conjugated Polymer Nanoparticles for Targeted Imaging of HER2-Positive Cancer Cells. Polymer Chemistry, 4, 4326-4334.
https://doi.org/10.1039/c3py00605k
[20]  Wu, C. and Chiu, D.T. (2012) Highly Fluorescent Semiconducting Polymer Dots for Biology and Medicine. Angewandte Chemie International Edition, 5, 873-912.
[21]  MacNeill, C.M., Coffin, R.C., Carroll, D.L., et al. (2013) Low Band Gap Donor-Acceptor Conjugated Polymer Nanoparticles and Their NIR‐Mediated Thermal Ablation of Cancer Cells. Macromolecular Bioscience, 13, 28-34.
https://doi.org/10.1002/mabi.201200241
[22]  Geng, J., Sun, C., Liu, J., et al. (2015) Biocompatible Conjugated Polymer Nanoparticles for Efficient Photothermal Tumor Therapy. Small, 11, 1603-1610.
https://doi.org/10.1002/smll.201402092
[23]  Zhang, J., Yang, C., Zhang, R., et al. (2017) Biocompatible D-A Semiconducting Polymer Nanoparticle with Light-Harvesting Unit for Highly Effective Photoacoustic Imaging Guided Photothermal Therapy. Advanced Functional Materials, 27, Article ID: 1605094.
https://doi.org/10.1002/adfm.201605094
[24]  马苏翔. 近红外吸收共轭聚合物的合成及其光热转换性能研究[D]: [硕士学位论文]. 合肥: 合肥工业大学, 2019.
[25]  Shen, W., Hu, T., Liu, X., et al. (2022) Defect Engi-neering of Layered Double Hydroxide Nanosheets as Inorganic Photosensitizers for NIR-III Photodynamic Cancer Therapy. Nature Communications, 13, Article No. 3384.
https://doi.org/10.1038/s41467-022-31106-9

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133